This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the pr...This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.展开更多
A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color stati...A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color statistics. Then it separates skin regions from non-skin regions. After that, it locates the fronta l human face(s) within the skin regions. In the first step, 250 skin samples from persons of different ethnicities are used to determine the color distribution o f human skin in chromatic color space in order to get a chroma chart showing lik elihoods of skin colors. This chroma chart is used to generate, from the origina l color image, a gray scale image whose gray value at a pixel shows its likelih ood of representing the skin. The algorithm uses an adaptive thresholding proces s to achieve the optimal threshold value for dividing the gray scale image into separate skin regions from non skin regions. Finally, multiple face templates ma tching is used to determine if a given skin region represents a frontal human fa ce or not. Test of the system with more than 400 color images showed that the re sulting detection rate was 83%, which is better than most color-based face dete c tion systems. The average speed for face detection is 0.8 second/image (400×300 pixels) on a Pentium 3 (800MHz) PC.展开更多
文摘This paper presents a multi-face detection method for color images. The method is based on the assumption that faces are well separated from the background by skin color detection. These faces can be located by the proposed method which modifies the subtractive clustering. The modified clustering algorithm proposes a new definition of distance for multi-face detection, and its key parameters can be predetermined adaptively by statistical information of face objects in the image. Downsampling is employed to reduce the computation of clustering and speed up the process of the proposed method. The effectiveness of the proposed method is illustrated by three experiments.
文摘A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color statistics. Then it separates skin regions from non-skin regions. After that, it locates the fronta l human face(s) within the skin regions. In the first step, 250 skin samples from persons of different ethnicities are used to determine the color distribution o f human skin in chromatic color space in order to get a chroma chart showing lik elihoods of skin colors. This chroma chart is used to generate, from the origina l color image, a gray scale image whose gray value at a pixel shows its likelih ood of representing the skin. The algorithm uses an adaptive thresholding proces s to achieve the optimal threshold value for dividing the gray scale image into separate skin regions from non skin regions. Finally, multiple face templates ma tching is used to determine if a given skin region represents a frontal human fa ce or not. Test of the system with more than 400 color images showed that the re sulting detection rate was 83%, which is better than most color-based face dete c tion systems. The average speed for face detection is 0.8 second/image (400×300 pixels) on a Pentium 3 (800MHz) PC.