To find a reasonable way to prepare the designed CPP32 inhibitors. Method Ugifour-component condensation reaction was used to synthesize peptide mimic CPP32 inhibitors; ResultsA key isocyanide component (aspartate-der...To find a reasonable way to prepare the designed CPP32 inhibitors. Method Ugifour-component condensation reaction was used to synthesize peptide mimic CPP32 inhibitors; ResultsA key isocyanide component (aspartate-derived isocyanide 3) and one of the designed CPP32inhibitors 4 (as a template) were synthesized; Conclusion The CPP32 inhibitor 4 was synthesized bythe newly developed procedure, which is an Ugi four-component condensation reaction based onaspartate-derived isocyanide 3. This method can be used to build up the CPP32 inhibitor library.展开更多
Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal si...Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and展开更多
MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ...MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ethylene. However, in our previous work, when 0.5 mL of MoVNbTe catalyst prepared using slurry method was tested in the propane ammoxidation to ACN, it only shows 1% conversion of propane with about 55% selectivity to CAN, thus giving only 0.6% yields to ACN. The poor catalyst activity is attributed to insufficient formation of crystalline phases essential for the propane activation process. In an attempt to improve the physicochemical properties of this catalyst, several preparation methods have been used, namely hydrothermal, reflux, changing the solvent and changing the calcinations temperature. The modified catalysts have been characterized using X-Ray Diffraction (XRD) and N2 physisorption (BET). The MoVNbTe catalyst prepared by hydrothermal method shows a remarkable improvement in the formation of crystalline phases.展开更多
文摘To find a reasonable way to prepare the designed CPP32 inhibitors. Method Ugifour-component condensation reaction was used to synthesize peptide mimic CPP32 inhibitors; ResultsA key isocyanide component (aspartate-derived isocyanide 3) and one of the designed CPP32inhibitors 4 (as a template) were synthesized; Conclusion The CPP32 inhibitor 4 was synthesized bythe newly developed procedure, which is an Ugi four-component condensation reaction based onaspartate-derived isocyanide 3. This method can be used to build up the CPP32 inhibitor library.
基金Supported by the Program for New Century Excellent Talents in University (NCET-07-0738)
文摘Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and
文摘MoVNbTe catalyst has been found to be the most active and selective catalyst in the ammoxidation of propane to ACN, the selective oxidation of propane to acrylic acid and in the oxidative dehydrogenation of ethane to ethylene. However, in our previous work, when 0.5 mL of MoVNbTe catalyst prepared using slurry method was tested in the propane ammoxidation to ACN, it only shows 1% conversion of propane with about 55% selectivity to CAN, thus giving only 0.6% yields to ACN. The poor catalyst activity is attributed to insufficient formation of crystalline phases essential for the propane activation process. In an attempt to improve the physicochemical properties of this catalyst, several preparation methods have been used, namely hydrothermal, reflux, changing the solvent and changing the calcinations temperature. The modified catalysts have been characterized using X-Ray Diffraction (XRD) and N2 physisorption (BET). The MoVNbTe catalyst prepared by hydrothermal method shows a remarkable improvement in the formation of crystalline phases.