The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between...The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.展开更多
A systematic investigation was carried out to discuss the corrosion and tribocorrosion behaviors of Hastelloy C276 alloy sliding against Al2O3 pin in artificial seawater, using a pin-on-disk tribometer integrated with...A systematic investigation was carried out to discuss the corrosion and tribocorrosion behaviors of Hastelloy C276 alloy sliding against Al2O3 pin in artificial seawater, using a pin-on-disk tribometer integrated with a potentiostat for electrochemical control. The results show that the great decrease of open circuit potential and three orders of magnitude increase of corrosion current density occur caused by friction. There are clearly synergistic effect between corrosion and wear, resulting in corrosion-induced-wear and wear-induced-corrosion in tribocorrosion process. The contribution of pure mechanical wear to total material loss exceeds 70% in all sliding conditions, so mechanical wear is the dominant factor during tribocorrosion. For considering synergistic effect between corrosion and wear, the contribution of wear-induced-corrosion to total material loss is not very high although corrosion rate is greatly accelerated by friction. The fraction of corrosion-induced-wear to the total material loss is high and in the range of 14.6%-20.5% under all sliding conditions.展开更多
The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear ...The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.展开更多
The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceram...The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.展开更多
The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that fr...The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.展开更多
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of...We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.展开更多
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and...Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.展开更多
The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions...The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.展开更多
To improve the tribological performance of 316 L in seawater, the CrN and CrSiN coatings were deposited by multi-arc ion plating. The coatings were systematically characterized. Corrosion properties were evaluated by ...To improve the tribological performance of 316 L in seawater, the CrN and CrSiN coatings were deposited by multi-arc ion plating. The coatings were systematically characterized. Corrosion properties were evaluated by immersion test and anodic polarization measurement. The friction and wear properties of the CrN and CrSiN coatings were investigated by ball-on-disk tribometer in artificial seawater. The results show that the CrN coating has strong(111) and(200) preferred orientations and the intensity of the peaks decreases for the CrSiN coating. The hardness of the CrSiN coating is higher than that of the CrN coating. The CrSiN coating presents better corrosion resistance in seawater. The friction coefficient and wear rate of the CrSiN coating are lower than those of the CrN coating, indicating positive effect of Si addition on tribological performance in seawater. The coatings could significantly improve the wear resistance of the 316 L in seawater.展开更多
Plasma electrolytic oxidation(PEO)coatings developed under voltage-controlled mode on various commercial wrought,gravity cast and rheocast aluminium alloys were discussed with respect to enhancement of their tribologi...Plasma electrolytic oxidation(PEO)coatings developed under voltage-controlled mode on various commercial wrought,gravity cast and rheocast aluminium alloys were discussed with respect to enhancement of their tribological and corrosionperformance and minimization of the PEO energy consumption.It is demonstrated that use of conventional porous anodic filmprecursors reduces the PEO energy consumption by up to50%.The wear of6082alloy with PEO coatings with addedα-Al2O3particles is two times lower compared with electrolytic hard chrome.The long-term corrosion resistance of the PEO-coatedA356rheocast alloy is enhanced via use of a precursor and hydrophobic post-treatment.展开更多
基金Project (LSL-1310) supported by the Open Project of State Key Laboratory of Solid Lubrication,Collaborative Innovation Center of Nonferrous Metals of Henan Province,ChinaProject (51171059) supported by the National Natural Science Foundation of China
文摘The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low.
基金Project(LSL-1310)supported by the Open Project of State Key Laboratory of Solid Lubrication,ChinaProject(51171059)supported by the National Natural Science Foundation of China
文摘A systematic investigation was carried out to discuss the corrosion and tribocorrosion behaviors of Hastelloy C276 alloy sliding against Al2O3 pin in artificial seawater, using a pin-on-disk tribometer integrated with a potentiostat for electrochemical control. The results show that the great decrease of open circuit potential and three orders of magnitude increase of corrosion current density occur caused by friction. There are clearly synergistic effect between corrosion and wear, resulting in corrosion-induced-wear and wear-induced-corrosion in tribocorrosion process. The contribution of pure mechanical wear to total material loss exceeds 70% in all sliding conditions, so mechanical wear is the dominant factor during tribocorrosion. For considering synergistic effect between corrosion and wear, the contribution of wear-induced-corrosion to total material loss is not very high although corrosion rate is greatly accelerated by friction. The fraction of corrosion-induced-wear to the total material loss is high and in the range of 14.6%-20.5% under all sliding conditions.
基金Project(LSL-1310)supported by the Open Project of State Key Laboratory of Solid Lubrication,ChinaProjects(2014QN013,2015GJB004)supported by the Research Foundation of Henan University of Science and Technology,China
文摘The electrochemical and corrosion?wear behaviors of TC4 alloy in artificial seawater were studied. And the influences of electrochemical state on passive behavior, failure mechanism of passive film and corrosion?wear synergy were emphatically analyzed. The corrosion?wear analysis of the alloy was fulfilled by methods of mass loss, electrochemical testing and scanning electron microscope (SEM). It can be observed that the cathodic shift of open circuit potential and three order of magnitude increase of current density can be obtained during corrosion?wear process. Total corrosion?wear loss increases with increasing applied potential, confirming the synergy between wear and corrosion. High polarisation potential results in low coefficient of friction and high corrosion rate. The relative contribution of pure mechanical wear to total material loss deceases obviously with the increase of potential from open circuit potential to 0.9 V during corrosion?wear. Contributions of wear-induced-corrosion and corrosion-induced-wear are significant especially at higher potentials.
基金Project(51271080) supported by the National Natural Science Foundation of China
文摘The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.
基金Project (50823008) supported by the National Natural Science Foundation of ChinaProject (2009AA03Z105) supported by the High-tech Research and Development Program of China
文摘The tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel were investigated using a ring-on-block test rig in both artificial seawater and distilled water. It is found that friction coefficients are in general larger in distilled water compared with seawater. The wear losses of Ti-6Al-4V and Monel K500 alloys are larger in seawater compared with distilled water. The mechanical action can destroy the passive film and increase the corrosion rate. The synergism effect between corrosion and wear occurs. The synergism action between corrosion and wear is related to the corrosion rate and with the increase of corrosion rate, the synergism becomes more important. 316 stainless steel suffers severe wear sliding against Monel K500 alloy compared with sliding against Ti-6Al-4V alloy in both distilled water and seawater.
文摘We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.
基金Projects(51071066,51671084)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0172)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.
文摘The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.
基金Project(51475449)supported by the National Natural Science Foundation of ChinaProject(LY14E010005)supported by the Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(Y201534852)supported by the Zhejiang Education Bureau Science Foundation,ChinaProject(201601HJ-B01034)supported by the Ningbo Municipal Natural Science Foundation,China
文摘To improve the tribological performance of 316 L in seawater, the CrN and CrSiN coatings were deposited by multi-arc ion plating. The coatings were systematically characterized. Corrosion properties were evaluated by immersion test and anodic polarization measurement. The friction and wear properties of the CrN and CrSiN coatings were investigated by ball-on-disk tribometer in artificial seawater. The results show that the CrN coating has strong(111) and(200) preferred orientations and the intensity of the peaks decreases for the CrSiN coating. The hardness of the CrSiN coating is higher than that of the CrN coating. The CrSiN coating presents better corrosion resistance in seawater. The friction coefficient and wear rate of the CrSiN coating are lower than those of the CrN coating, indicating positive effect of Si addition on tribological performance in seawater. The coatings could significantly improve the wear resistance of the 316 L in seawater.
基金supported by Regional Government of Madrid and EU Structural Funds via Multimat Challenge Programme(S2013/MIT-2862-CM)Proyecto Retos Jovenes Investigadores Programme(MAT2015-73355-JIN)funded by MINECO,Spain
文摘Plasma electrolytic oxidation(PEO)coatings developed under voltage-controlled mode on various commercial wrought,gravity cast and rheocast aluminium alloys were discussed with respect to enhancement of their tribological and corrosionperformance and minimization of the PEO energy consumption.It is demonstrated that use of conventional porous anodic filmprecursors reduces the PEO energy consumption by up to50%.The wear of6082alloy with PEO coatings with addedα-Al2O3particles is two times lower compared with electrolytic hard chrome.The long-term corrosion resistance of the PEO-coatedA356rheocast alloy is enhanced via use of a precursor and hydrophobic post-treatment.