Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information o...Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surfacebefore and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change inintermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions ofintermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMgparticles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structurecomprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery ofAl2CuMg particles at the early stage of dealloying. Development of trenching in Al.Cu.Fe.Mn.(Si) particle’s periphery was notuniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particleswas mainly associated with Al2CuMg particles.展开更多
A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The inf...A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring th...A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.展开更多
A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etc...A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etching-selectivity ratio of InGaAs to InA1As material larger than 100 is achieved by using mixture solution of succinic acid and hydrogen peroxide (H202). Selective wet-etching is validated in the gate-recess process of InA1As/InGaAs InP-based HEMTs, which proceeds and auto- matically stops at the InA1As barrier layer. The non-selective digital wet-etching process is developed using a separately controlled oxidation/de-oxidation technique, and during each digital etching cycle 1.2 nm InAIAs material is removed. The two-step gate-recess etching technique has been successfully incorporated into device fabrication. Digital wet-etching is repeated for two cycles with about 3 nm InAIAs barrier layer being etched off. InP-based HEMTs have demonstrated superior extrinsic trans- conductance and RF characteristics to devices fabricated during only the selective gate-recess etching process because of the smaller gate to channel distance.展开更多
The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser trea...The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of^40 μm and the depth of ~10 μm on the surface. The water contact angles along the groove direction decreased by 51%compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank’s solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3 T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.展开更多
基金Project(51201157)supported by the National Natural Science Foundation of ChinaProject(H052013A003)supported by the National Defense Technology Foundation,ChinaProject supported by the UK-ESPRC LATEST2 Program
文摘Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surfacebefore and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change inintermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions ofintermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMgparticles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structurecomprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery ofAl2CuMg particles at the early stage of dealloying. Development of trenching in Al.Cu.Fe.Mn.(Si) particle’s periphery was notuniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particleswas mainly associated with Al2CuMg particles.
文摘A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.
文摘A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.
基金Project supported by the National Natural Science Foundation of China (Nos. 61404115 and 61434006), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (No. 18IRTSTHN016), and the Development Fund for Outstanding Young Teachers in Zhengzhou University, China (No. 1521317004)
文摘A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etching-selectivity ratio of InGaAs to InA1As material larger than 100 is achieved by using mixture solution of succinic acid and hydrogen peroxide (H202). Selective wet-etching is validated in the gate-recess process of InA1As/InGaAs InP-based HEMTs, which proceeds and auto- matically stops at the InA1As barrier layer. The non-selective digital wet-etching process is developed using a separately controlled oxidation/de-oxidation technique, and during each digital etching cycle 1.2 nm InAIAs material is removed. The two-step gate-recess etching technique has been successfully incorporated into device fabrication. Digital wet-etching is repeated for two cycles with about 3 nm InAIAs barrier layer being etched off. InP-based HEMTs have demonstrated superior extrinsic trans- conductance and RF characteristics to devices fabricated during only the selective gate-recess etching process because of the smaller gate to channel distance.
基金supported by the National Natural Science Foundation of China (NSFC, 51771011)the Fundamental Research Funds for the Central Universities (KG12002601)
文摘The corrosion resistance and cytocompatibility of Ti-20 Zr-10 Nb-4 Ta(TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy(SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of^40 μm and the depth of ~10 μm on the surface. The water contact angles along the groove direction decreased by 51%compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank’s solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3 T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.