The corrosion behaviors of copper and copper/titanium galvanic couple (GC) in seawater were studied by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques in conjunction with s...The corrosion behaviors of copper and copper/titanium galvanic couple (GC) in seawater were studied by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques in conjunction with scanning electron microscopy (SEM) method. The results show that the corrosion process of copper in seawater can be divided into two stages, in which corrosion resistance and SE show the same evolution trend of initial increase and subsequent decrease, while SG changes oppositely. However, the ensemble corrosion process of copper/titanium GC in seawater includes three stages, in which corrosion resistance and SE show the evolution features of initial decrease with a subsequently increase, and the final decrease again;while SG changes oppositely. The potential difference between copper and titanium in their galvanic couple can accelerate the initiation of pitting corrosion of copper, and both the minimum and maximum corrosion potentials of copper/titanium GC are much more positive than those of pure copper.展开更多
Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare in...Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare initial pitting events, which appeared on their surfaces. EN analysis was carried out using the power spectral density (PSD) vs frequency. The decrease of the β exponent in PSD graphs indicated a release of spontaneous energy with the progress of pit formation in seawater. The fluctuations were associated with the breakdown and formation of new corrosion layers. The values of β exponent in PSD graphs suggest that corrosion process of AA2219-T42 alloy occurs as a persistent non-stationary process, the dynamics of which is controlled by fractional Brownian motion (fBm), while on AA6061-T6 alloy the corrosion process was dominated by stationary and weakly persistent features, with the contribution of fractional Gaussian noise (fGn). After the exposure in seawater, SEM-EDX analysis revealed insoluble intermetallic particles on the alloys, rich in Cu or Fe and irregularly distributed. The preferential dissolution of Mg and Al occurs from the S-phase (Al2CuMg) of AA2219-T42 alloy.展开更多
The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/...The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.展开更多
基金Projects(21073162,51131005)supported by the National Natural Science Foundation of ChinaProject(Y4100206)supported by the Science and Technology Bureau of Jiaxing Municipality and Zhejiang Provincial Natural Science Foundation of China
文摘The corrosion behaviors of copper and copper/titanium galvanic couple (GC) in seawater were studied by electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques in conjunction with scanning electron microscopy (SEM) method. The results show that the corrosion process of copper in seawater can be divided into two stages, in which corrosion resistance and SE show the same evolution trend of initial increase and subsequent decrease, while SG changes oppositely. However, the ensemble corrosion process of copper/titanium GC in seawater includes three stages, in which corrosion resistance and SE show the evolution features of initial decrease with a subsequently increase, and the final decrease again;while SG changes oppositely. The potential difference between copper and titanium in their galvanic couple can accelerate the initiation of pitting corrosion of copper, and both the minimum and maximum corrosion potentials of copper/titanium GC are much more positive than those of pure copper.
基金the partial financial support of this study from CONACYT (Grant 179110)
文摘Aluminum alloy samples, 6061-T6 and 2219-T42, were exposed to Caribbean seawater for 90 d. The fluctuations of open circuit potential, considered as electrochemical noise (EN), were used to characterize and compare initial pitting events, which appeared on their surfaces. EN analysis was carried out using the power spectral density (PSD) vs frequency. The decrease of the β exponent in PSD graphs indicated a release of spontaneous energy with the progress of pit formation in seawater. The fluctuations were associated with the breakdown and formation of new corrosion layers. The values of β exponent in PSD graphs suggest that corrosion process of AA2219-T42 alloy occurs as a persistent non-stationary process, the dynamics of which is controlled by fractional Brownian motion (fBm), while on AA6061-T6 alloy the corrosion process was dominated by stationary and weakly persistent features, with the contribution of fractional Gaussian noise (fGn). After the exposure in seawater, SEM-EDX analysis revealed insoluble intermetallic particles on the alloys, rich in Cu or Fe and irregularly distributed. The preferential dissolution of Mg and Al occurs from the S-phase (Al2CuMg) of AA2219-T42 alloy.
基金Project(2006CB605004) supported by the National Basic Research Program of China
文摘The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.