期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Fe-20Cr溅射纳米涂层的腐蚀电化学性能研究 被引量:12
1
作者 李雪莉 李瑛 王福会 《中国腐蚀与防护学报》 CAS CSCD 2003年第2期84-88,共5页
利用电化学方法与表面分析技术 ,考察了平面磁控溅射Fe - 2 0Cr纳米涂层的腐蚀电化学性能及耐蚀机制 .研究表明 ,尽管溅射纳米涂层钝化膜的溶解速度高于铸态合金 ,但其钝化趋势较强 ,即使在含有 0 5mol/LNaCl的H2 SO4溶液中仍能自钝化 ... 利用电化学方法与表面分析技术 ,考察了平面磁控溅射Fe - 2 0Cr纳米涂层的腐蚀电化学性能及耐蚀机制 .研究表明 ,尽管溅射纳米涂层钝化膜的溶解速度高于铸态合金 ,但其钝化趋势较强 ,即使在含有 0 5mol/LNaCl的H2 SO4溶液中仍能自钝化 ,而此时铸态合金的钝化趋势非常微弱 ;纳米涂层的耐点蚀能力也远优于铸态合金 ; 展开更多
关键词 平面磁控溅射 Fe-20Cr纳米涂层 腐蚀电化学性能 自钝化 点蚀
下载PDF
固溶处理对Mg-6Al-5Pb-1.5In阳极腐蚀电化学性能的影响 被引量:5
2
作者 金和喜 王日初 +3 位作者 彭超群 石凯 陈雅谨 许泽辉 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第2期403-409,共7页
在3.5%NaCl(质量分数)溶液中测定铸态和经固溶处理的Mg-6Al-5Pb-1.5In镁合金阳极的腐蚀电化学性能,采用金相(OM)、扫描电镜(SEM)和能谱分析(EDS)分别研究其显微组织、截面腐蚀形貌及相组成。结果表明:固溶后β-Mg17Al12相基本溶入α-Mg... 在3.5%NaCl(质量分数)溶液中测定铸态和经固溶处理的Mg-6Al-5Pb-1.5In镁合金阳极的腐蚀电化学性能,采用金相(OM)、扫描电镜(SEM)和能谱分析(EDS)分别研究其显微组织、截面腐蚀形貌及相组成。结果表明:固溶后β-Mg17Al12相基本溶入α-Mg基体,降低微电偶腐蚀中阴极与阳极的面积比,增大阳极自腐蚀速率;Mg2Pb相的自腐蚀电位比镁基体正,固溶后Pb以Mg2Pb相析出,阳极表面腐蚀后晶粒中央的Mg2Pb相并没有被腐蚀。Al含量是决定镁阳极中各相腐蚀速率的关键,相表面形成的保护膜中Al含量越高,对基体保护性能越好。 展开更多
关键词 镁阳极 固溶处理 腐蚀电化学性能
下载PDF
制备工艺对钒基固溶体储氢合金电化学性能的影响分析
3
作者 魏凤琴 邓静 《热加工工艺》 CSCD 北大核心 2016年第15期85-87,90,共4页
为了有效提高铸态钒基固溶体储氢合金的电化学性能,分别采用三种不同的铸造工艺制备了V_3TiNi_(0.56_Sc_(0.1)钒基固溶体储氢合金铸态试样,并进行了显微组织观察以及电化学循环稳定性和电化学腐蚀性能的测试与分析。结果表明:与常规铸... 为了有效提高铸态钒基固溶体储氢合金的电化学性能,分别采用三种不同的铸造工艺制备了V_3TiNi_(0.56_Sc_(0.1)钒基固溶体储氢合金铸态试样,并进行了显微组织观察以及电化学循环稳定性和电化学腐蚀性能的测试与分析。结果表明:与常规铸造法相比,静置辅助铸造法和双重辅助铸造法有利于改善合金的铸造质量,细化合金晶粒,提高合金的电化学循环稳定性和电化学腐蚀性能,且双重辅助铸造法效果更佳;静置辅助铸造法、双重辅助铸造法分别使放电容量衰减率减小47%、71%,分别使合金的腐蚀电位正移109、237 m V。 展开更多
关键词 钒基固溶体储氢合金 制备工艺 电化学腐蚀性能电化学循环稳定性 V3TiNi0.56Sc0.1合金
下载PDF
钛含量对MgNi储氢合金电化学性能的影响 被引量:1
4
作者 王海华 王侠 《钢铁钒钛》 CAS 北大核心 2018年第4期70-73,共4页
对添加不同含量Ti的Mg2Ni-Ti储氢合金进行了电化学腐蚀试验和电化学循环稳定性的测试与分析,结果表明:合金元素Ti的添加,有利于提高Mg2Ni合金的电化学腐蚀性能和电化学循环稳定性。合金中Ti含量以0.8%为宜。与不添加Ti的Mg2Ni储氢合金相... 对添加不同含量Ti的Mg2Ni-Ti储氢合金进行了电化学腐蚀试验和电化学循环稳定性的测试与分析,结果表明:合金元素Ti的添加,有利于提高Mg2Ni合金的电化学腐蚀性能和电化学循环稳定性。合金中Ti含量以0.8%为宜。与不添加Ti的Mg2Ni储氢合金相比,添加0.8%Ti时合金的腐蚀电位正移87 m V,放电容量衰减率从86%减小到47%。 展开更多
关键词 Mg2Ni-Ti储氢合金 钛含量 电化学腐蚀性能 电化学循环稳定性
原文传递
Corrosion behavior of thermal sprayed WC cermet coatings containing metallic binders in saline environment 被引量:9
5
作者 王丽君 邱培现 +3 位作者 刘艳 周伍喜 苟国庆 陈辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2611-2617,共7页
A series of electrochemical and long-term corrosion tests were carried out in a neutral saline (5%NaCl) vapor of 35 °C on thermal sprayed WC cermet coatings containing different kinds of metallic binders in ord... A series of electrochemical and long-term corrosion tests were carried out in a neutral saline (5%NaCl) vapor of 35 °C on thermal sprayed WC cermet coatings containing different kinds of metallic binders in order to examine the effect of composition of binder materials on the corrosion behavior. The experimental results revealed that the overall corrosion resistance of WC-Co coating was inferior to that of WC-Co-Cr coating. For the coatings without Cr, WC-Co, general corrosion occurred in binder materials in addition to galvanic corrosion between WC particles and metallic binders in the neutral environment. By contrast, the formation of passive film in the form of surface oxide in the coatings containing Cr, WC-Co-Cr, suppressed the binder and metallic binders to be eroded. It is found that the chemical composition of metallic binder materials is one of the important factors influencing the corrosion resistance of HVOF sprayed WC cermet coatings in the neutral vapor. 展开更多
关键词 WC-CO WC-Co-Cr corrosion protection corrosion resistance electrochemical characterization
下载PDF
Effects of surface nanocrystallization on corrosion resistance of β-type titanium alloy 被引量:10
6
作者 金磊 崔文芳 +2 位作者 宋秀 刘刚 周廉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2529-2535,共7页
Surface mechanical attrition treatment (SMAT) was performed on biomedicalβ-type TiNbZrFe alloy for 60 min at room temperature to study the effect of surface nanocrystallization on the corrosion resistance of TiNbZrFe... Surface mechanical attrition treatment (SMAT) was performed on biomedicalβ-type TiNbZrFe alloy for 60 min at room temperature to study the effect of surface nanocrystallization on the corrosion resistance of TiNbZrFe alloy in physiological environment. The surface nanostructure was characterized by TEM, and the electrochemical behaviors of the samples with nanocrystalline layer and coarse grain were comparatively investigated in 0.9% NaCl and 0.2% NaF solutions, respectively. The results indicate that nanocrystallines with the size of 10-30 nm are formed within the surface layer of 30 μm in depth. The nanocrystallized surface behaves higher impedance, more positive corrosion potential and lower corrosion current density in 0.9%NaCl and 0.2%NaF solutions as compared with the coarse grain surface. The improvement of the corrosion resistance is attributed to the rapid formation of stable and dense passive film on the nanocrystallized surface of TiNbZrFe alloy. 展开更多
关键词 biomedical β titanium alloy surface nanocrystallization electrochemical behavior corrosion resistance
下载PDF
Effects of Hg and Ga on microstructures and electrochemical corrosion behaviors of Mg anode alloys 被引量:1
7
作者 张嘉佩 王日初 +1 位作者 冯艳 彭超群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3039-3045,共7页
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea... The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms. 展开更多
关键词 Mg anode alloy microstructure electrochemical activity corrosion resistance electrochemical impedance spectroscopy
下载PDF
Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship 被引量:6
8
作者 Seong-Jong KIM Seok-Ki JANG +3 位作者 Min-Su HAN Jae-Cheul PARK Jae-Yong JEONG Sang-Ok CHONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期636-641,共6页
The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed ... The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment. 展开更多
关键词 aluminum alloy CORROSION electrochemical characteristics stress corrosion cracking hydrogen embrittlement sea water corrosion cathodic protection
下载PDF
Comparative study on microstructure and electrochemical corrosion resistance of Al7075 alloy prepared by laser additive manufacturing and forging technology 被引量:7
9
作者 ZHANG Jin-liang YE Jie-liang +2 位作者 SONG Bo LI Rui-di SHI Yu-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1058-1067,共10页
Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large... Al7075 alloy is a typical aviation aluminum with good mechanical properties and anodic oxidation effect.Laser engineered net shaping technology has unique advantages in the integrated forming of high-performance large aircraft structural parts.The manufacturing of 7075 aluminum alloy structural parts by laser engineered net shaping technology has become an important development direction in the future aerospace field.Electrochemical corrosion resistance of aluminum alloys is of vital importance to improve reliability and life-span of lightweight components.A comparative study on microstructure and anti-corrosion performance of Al7075 alloy prepared by laser additive manufacturing and forging technology was conducted.There are hole defects in LENS-fabricated Al7075 alloy with uniformly distributedηphase.No defects are observed in Al7075 forgings.The large S phase particles and small ellipsoidalηphase particles are found in Al matrix.The corrosion mechanisms were revealed according to the analysis of polarization curves and corrosion morphology.It was found that compared with that prepared by forgings,the additive manufactured samples have lower corrosion tendency and higher corrosion rate.Corrosion occurred preferentially at the hole defects.The incomplete passivation film at the defects leads to the formation of a local cell composed of the internal Al,corrosion solution and the surrounding passive film,which further aggravates the corrosion. 展开更多
关键词 Al7075 alloy laser engineered net shaping FORGING electrochemical corrosion resistance
下载PDF
Effect of rolling processing on microstructure and electrochemical properties of high active aluminum alloy anode 被引量:3
10
作者 梁叔全 张勇 +2 位作者 官迪凯 唐艳 毛志伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期942-949,共8页
The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopot... The effect of rolling processing on the microstructure,electrochemical property and anti-corrosion property of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution(80℃,Na2SnO3+5 mol/L NaOH)was analyzed by the chronopotentiometry (E-T curves),hydrogen collection tests and modern microstructure analysis.The results show that when the rolling temperature is 370℃,the electrochemical activity of Al anode decreases gradually with the increase of pass deformation in rolling,while the anti-corrosion property is improved in the beginning and then declined rapidly.When the pass deformation of rolling is 40%,the Al anode has good electrochemical activity as good as the anti-corrosion property and with the increase of rolling temperature,both electrochemical activity and anti-corrosion property of Al anode increase first and then decrease.When the rolling temperature is 420 ℃,the aluminum alloy anode has the most negative electrode potential of about-1.521 V(vs Hg/HgO)and the lowest hydrogen evolution rate of 0.171 6 mL/(min·cm2).The optimum comprehensive performance of Al alloy anode is obtained. 展开更多
关键词 Al alloy anode MICROSTRUCTURE electrochemical property anti-corrosion property
下载PDF
Effect of temperature on copper corrosion in high-level nuclear waste environment 被引量:4
11
作者 De-cheng KONG Chao-fang DONG +1 位作者 Kui XIAO Xiao-gang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1431-1438,共8页
The effect of temperature on the corrosion behavior of copper in simulated high-level nuclear waste environment wassystematically studied.Electrochemical methods,including electrochemical impendence spectra,Mott–Scho... The effect of temperature on the corrosion behavior of copper in simulated high-level nuclear waste environment wassystematically studied.Electrochemical methods,including electrochemical impendence spectra,Mott–Schottky technology,cyclicpolarization,and potentiostatic polarization,were employed to characterize the corrosion behavior of copper at different temperatures.Stereoscopic microscopy and scanning electron microscopy were used to examine the surface morphology,and X-ray photoelectronspectroscopy analysis was used to identify the composition of the passive film.The experimental results show that corrosionresistance of the passive film does not blindly decrease with the increase of temperature but increases at60°C owing to a compactouter layer;there is a potential for pitting corrosion,which decreases as the temperature increases.The main product of copper in ananaerobic aqueous sulfide solution is Cu2S but the content of CuS increases at higher temperatures.The whole passivation rangeshows p-type semiconductor characteristics and the magnitude of the acceptor density is1023cm-3,which increases with increasingtemperature. 展开更多
关键词 copper corrosion SULFIDE nuclear waste disposal TEMPERATURE electrochemical performance
下载PDF
Effect of thermo-mechanical processing on microstructure and electrochemical behavior of Ti-Nb-Zr-V new metastable β titanium biomedical alloy 被引量:3
12
作者 Mohsin Talib MOHAMMED Zahid A.KHAN M.GEETHA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期759-769,共11页
The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in below... The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements. 展开更多
关键词 titanium alloy thermo-mechanical processing biomedical application MICROSTRUCTURE electrochemical behavior corrosion
下载PDF
Optimization of Cr/Mo molar ratio in FeCoCrMoCBY alloys for high corrosion resistance 被引量:3
13
作者 Cheng-jie WANG Qing-jun CHEN Huai-xiao XIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2663-2672,共10页
The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measureme... The corrosion behavior of bulk metallic glasses(BMGs)(Fe41Co7Cr15Mo14C15B6Y2)100-xCrx(x=0,4,8,12,molar fraction,%)was investigated in1mol/L HCl aqueous solution with electrochemical tests.The electrochemical measurements demonstrate that the passive current density of Fe-based amorphous alloy is reduced by about one order of magnitude,and meanwhile,the stability of passive film can be guaranteed by the Cr/Mo molar ratio.The Mott–Schottky(M–S)curves show that the passive film is the densest when the molar ratio of Cr/Mo is between1.37and1.69.X-ray photoelectron spectroscopy(XPS)analysis was performed to clarify chemical states of elements in the passive films.The results show that the corrosion resistance of the alloy is related to the molar ratio of Cr/Mo.The stability of passive film is determined by the synergistic action of Cr and Mo elements.The main component of the passive film is Cr3+oxide.When the potential is greater than0.5V(vs SCE),Mo6+ions play an important role in keeping the stability of the passive film.The appropriate molar ratio of Cr/Mo can reduce the dissolution rate of the passive film. 展开更多
关键词 bulk metallic glasses corrosion resistance passive film electrochemical measurement Cr/Mo molar ratio
下载PDF
Corrosion performance of zinc coated steel in seawater environment
14
作者 刘栓 赵霞 +2 位作者 赵海超 孙虎元 陈建敏 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期423-430,共8页
Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in sea... Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8C12, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH. 展开更多
关键词 zinc coated steel seawater corrosion behavior PITTING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部