In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM)....In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM).It is assumed that there is a macro human order parameter(wave function),and its dynamics are governed by a macro potential field reflecting influences from heaven,earth,and society,and satisfy the generalized Schrodinger equation.This proposed model was applied in the study to interpret basic concepts of human body in TCM,with an aim to unfold the TCM development in the future.展开更多
A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtere...A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtered signal from a broadband light source can be tuned with an absorption spectral line of gas. Therefore, through adding microring resonators horizontally and vertically, the number of target gases and filter range are increased. In this research, in the broad spectral range of about 0.9 μm, only the absorption spectral lines of target gases are filtered. The simulation results show that three target gases, CH_4, CO_2 and HF, can be simultaneously detected by the sensing system. Owing to the fiber loop ring-down spectroscopy, the whole system is optimized in mini-size and sensitivity, and we can choose different sensing methods to enhance the measurement accuracy for high and low concentration conditions.展开更多
The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photolu...The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photoluminescence from Ge quantum wells on SOI substrate is strongly modulated by Fabry-Perot cavity formed between the surface of Ge and the interface of buried SiO2. The photoluminescence peak intensity at 1.58 μm is enhanced by about 21 times compared with that from the Ge/SiGe quantum wells on Si substrate, and the full width at half maximum (FWHM) is significantly reduced. It is suggested that tensile strained Ge/SiGe multiple quantum wells are one of the promising materials for Si-based microcavity lijzht emitting devices.展开更多
基金the ENN Institute of Life Science and Technology for their financial support。
文摘In the study,a quantum resonant cavity model based on wave-particle duality was proposed for the explanation of the dynamic processes of essence,vigor,and spirit in the human body in traditional Chinese medicine(TCM).It is assumed that there is a macro human order parameter(wave function),and its dynamics are governed by a macro potential field reflecting influences from heaven,earth,and society,and satisfy the generalized Schrodinger equation.This proposed model was applied in the study to interpret basic concepts of human body in TCM,with an aim to unfold the TCM development in the future.
基金supported by the National Natural Science Foundation of China(Nos.61471210 and 61501271)Happiness Foundation of Wang Kuancheng
文摘A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtered signal from a broadband light source can be tuned with an absorption spectral line of gas. Therefore, through adding microring resonators horizontally and vertically, the number of target gases and filter range are increased. In this research, in the broad spectral range of about 0.9 μm, only the absorption spectral lines of target gases are filtered. The simulation results show that three target gases, CH_4, CO_2 and HF, can be simultaneously detected by the sensing system. Owing to the fiber loop ring-down spectroscopy, the whole system is optimized in mini-size and sensitivity, and we can choose different sensing methods to enhance the measurement accuracy for high and low concentration conditions.
基金supported by the National Natural Science Foundation of China(Nos.61036003 and 61176092)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110121110025)
文摘The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photoluminescence from Ge quantum wells on SOI substrate is strongly modulated by Fabry-Perot cavity formed between the surface of Ge and the interface of buried SiO2. The photoluminescence peak intensity at 1.58 μm is enhanced by about 21 times compared with that from the Ge/SiGe quantum wells on Si substrate, and the full width at half maximum (FWHM) is significantly reduced. It is suggested that tensile strained Ge/SiGe multiple quantum wells are one of the promising materials for Si-based microcavity lijzht emitting devices.