Vascular endothelial cell growth inhibitor (VEGI) is a member of the tumor necrosis factor superfamily and plays an important role in vascular homeostasis. In this study, to investigate the anticancer therapeutic po...Vascular endothelial cell growth inhibitor (VEGI) is a member of the tumor necrosis factor superfamily and plays an important role in vascular homeostasis. In this study, to investigate the anticancer therapeutic potential of this gene, a secreted isoform of VEGI (VEGI-251) was inserted into a selectively replicating adenovirus with E1B 55 kDa gene deletion (ZD55) to construct ZD55-VEGI-251. We report here that secreted VEGI-251 produced from ZD55- VEGI-251-infected cancer cells potently inhibits endothelial cell proliferation, tube formation in vitro and angiogen- esis of chick chorioallantoic membrane in vivo. Additionally, ZD55-VEGI-251 infection leads to a much more severe cytopathic effect than control viruses on several human cancer cell lines, including cervical cancer cell line HeLa, hepatoma cell line SMMC-7721 and colorectal cancer cell line SW620. Further study reveals that the increased cytotoxicity is a result of VEGI-251 autocrine-dependent, mitochondria-mediated apoptosis accompanied by caspase-9 activation, enhanced caspase-3 activation and PARP cleavage. Moreover, ZD55-VEGI-251-treatment of athymic nude mice bearing human cervical and colorectal tumor xenografts markedly suppressed tumor growth. Our findings indicate that the combined effect of antiangiogenesis and apoptosis-induction activity makes the VEGI-251-armed oncolytic adenovirus a promising therapeutic agent for cancer.展开更多
AIM: Anti-Saccharomyces anti-nuclear associated cerevisiae antibodies (ASCA), anti-neutrophil antibodies (NANA) and antibodies to exocrine pancreas (PAB), are serological tools for discriminating Crohn's disea...AIM: Anti-Saccharomyces anti-nuclear associated cerevisiae antibodies (ASCA), anti-neutrophil antibodies (NANA) and antibodies to exocrine pancreas (PAB), are serological tools for discriminating Crohn's disease (CrD) and ulcerative colitis (UC). Like CrD, coeliac disease (COD) is an inflammatory bowel disease (IBD) associated with (auto) antibodies. Performing a multicenter study we primarily aimed to determine the performance of ASCA, NANA and PAB tests for IBD diagnosis in children and adults, and secondarily to evaluate the prevalence of these markers in CoD. METHODS: Sera of 109 patients with CrD, 78 with UC, 45 with CoD and 50 healthy blood donors were retrospectively included. ASCA, NANA and PAB were detected by indirect immunofluorescence (IIF). RESULTS: ASCA+/NANA- profile displayed a positive predictive value of 94.2% for CrD. Detection of ASCA was correlated with a more severe clinical profile of CrD and treatment of the disease did not influence their serum levels. ASCA positivity was found in 37.9% of active CoD.PAB were found in 36.7% CrD and 13.3% CoD patients and were not correlated with clinical features of CrD, except with an early onset of the disease. Fifteen CrD patients were ASCA negative and PAB positive. CONCLUSION: ASCA and PAB detected by IIF are specific markers for CrD although their presence does not rule out a possible active CoD. The combination of ASCA, NANA and PAB tests improves the sensitivity of immunological markers for CrD. Repeating ASCA, NANA, and PAB testing during the course of CrD has no clinical value.展开更多
OBJECTIVE: To explore the effect and the mechanism of Chaiqinchengqi decoction(CQCQD) on the apoptosis-necrosis switch of pancreatic acinar cells in acute necrotizing pancreatitis(ANP) in rats.METHODS: Sixty Sprague-D...OBJECTIVE: To explore the effect and the mechanism of Chaiqinchengqi decoction(CQCQD) on the apoptosis-necrosis switch of pancreatic acinar cells in acute necrotizing pancreatitis(ANP) in rats.METHODS: Sixty Sprague-Dawley rats were randomized into the control group, the ANP group and the CQCQD group. The acute pancreatitis(AP)model was induced by intraperitoneal injections of4 g/kg 8% L-Arginine(PH 7.0) twice with a 1 h interval. Rats in the CQCQD group were intragastrically administered CQCQD(20 mL/kg every 2 h, 3 times,then 20 mL/kg every 6 h, 3 times). Rats were killed at the 6 and 24 h after the induction of AP.The pancreatic tissues were collected for pathology and to isolate pancreatic acinar cells and mitochondria.RESULTS: CQCQD significantly ameliorated the severity of ANP by reducing the pancreatic histopathology score, indicated by lactate dehydrogenase levels at the 6 and 24 h. The CQCQD group promoted the apoptosis of pancreatic acinar cells by raising the apoptosis index compared with the ANP group and the control group. Mitochondrial cytochrome c at the 6 and 24 h in the ANP group were lower than that in the control group or the CQCQD group(0.67±0.13 vs 1.54±0.03 vs 0.81±0.09; 0.71±0.08 vs 1.55±0.09 vs 0.89±0.16, P<0.01). The cytochrome c levels in the cytoplasm at the 6 and 2 h in the CQCQD group were higher than in the control group(1.36±0.15 vs 0.67±0.04, 1.46±0.08 vs 0.59±0.09, P<0.01), or the ANP group(0.96±0.13, P>0.05;0.97±0.09, P<0.05). CQCQD increased caspase-3 activity over the ANP group at the 6 h.CONCLUSION: CQCQD can induce apoptosis and relieve the necrosis of pancreatic acinar cells via promoting the release of mitochondrial cytochrome c and increasing pancreatic caspase-3 activity in ANP rats.展开更多
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFP...Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs ceils for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.展开更多
Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes...Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes associated with this tumor. In this work, by targeting the 21-mer telomere G-quadruplex structure, compounds VB07 and VC02 were identified to stabilize the telomere G-quadruplex through structure-based high-throughput virtual screening. Cell cytotoxicity assay showed that VB07 and VC02 exhibited inhibitory effect on triple-negative breast cancer cells at the concentration of 5 μM. This study showed that structure-based high-throughput virtual screening was able to successfully identify the proper compounds targeting the telomere G-quadruplex, which exhibited inhibitory effects against the triple-negative breast cancer cells.展开更多
基金We thank Lanying Sun, Yang Xiao, Yuelei Chen, Hua Zhou and Cell Analysis Center (Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences) for professional technical assistance. This work was supported in part by grants from Hi-Tech Research Development Program of China (863 Program, No. 2007AA021006) the Key Project of the Chinese Academy of Sciences (No. KSCX2-YW- R-09)+1 种基金 the 973 Project (No. 2004CB518804) Grant 30623003 from National Nature Science Foundation of China and Grant 06DZ22032 from Science and Technology Commission of Shang- hai Municipality.
文摘Vascular endothelial cell growth inhibitor (VEGI) is a member of the tumor necrosis factor superfamily and plays an important role in vascular homeostasis. In this study, to investigate the anticancer therapeutic potential of this gene, a secreted isoform of VEGI (VEGI-251) was inserted into a selectively replicating adenovirus with E1B 55 kDa gene deletion (ZD55) to construct ZD55-VEGI-251. We report here that secreted VEGI-251 produced from ZD55- VEGI-251-infected cancer cells potently inhibits endothelial cell proliferation, tube formation in vitro and angiogen- esis of chick chorioallantoic membrane in vivo. Additionally, ZD55-VEGI-251 infection leads to a much more severe cytopathic effect than control viruses on several human cancer cell lines, including cervical cancer cell line HeLa, hepatoma cell line SMMC-7721 and colorectal cancer cell line SW620. Further study reveals that the increased cytotoxicity is a result of VEGI-251 autocrine-dependent, mitochondria-mediated apoptosis accompanied by caspase-9 activation, enhanced caspase-3 activation and PARP cleavage. Moreover, ZD55-VEGI-251-treatment of athymic nude mice bearing human cervical and colorectal tumor xenografts markedly suppressed tumor growth. Our findings indicate that the combined effect of antiangiogenesis and apoptosis-induction activity makes the VEGI-251-armed oncolytic adenovirus a promising therapeutic agent for cancer.
文摘AIM: Anti-Saccharomyces anti-nuclear associated cerevisiae antibodies (ASCA), anti-neutrophil antibodies (NANA) and antibodies to exocrine pancreas (PAB), are serological tools for discriminating Crohn's disease (CrD) and ulcerative colitis (UC). Like CrD, coeliac disease (COD) is an inflammatory bowel disease (IBD) associated with (auto) antibodies. Performing a multicenter study we primarily aimed to determine the performance of ASCA, NANA and PAB tests for IBD diagnosis in children and adults, and secondarily to evaluate the prevalence of these markers in CoD. METHODS: Sera of 109 patients with CrD, 78 with UC, 45 with CoD and 50 healthy blood donors were retrospectively included. ASCA, NANA and PAB were detected by indirect immunofluorescence (IIF). RESULTS: ASCA+/NANA- profile displayed a positive predictive value of 94.2% for CrD. Detection of ASCA was correlated with a more severe clinical profile of CrD and treatment of the disease did not influence their serum levels. ASCA positivity was found in 37.9% of active CoD.PAB were found in 36.7% CrD and 13.3% CoD patients and were not correlated with clinical features of CrD, except with an early onset of the disease. Fifteen CrD patients were ASCA negative and PAB positive. CONCLUSION: ASCA and PAB detected by IIF are specific markers for CrD although their presence does not rule out a possible active CoD. The combination of ASCA, NANA and PAB tests improves the sensitivity of immunological markers for CrD. Repeating ASCA, NANA, and PAB testing during the course of CrD has no clinical value.
基金Supported by National Natural Science Foundation of China (No.81072910)Science and Technology Support Program of Sichuan (No.2011SZ0291)
文摘OBJECTIVE: To explore the effect and the mechanism of Chaiqinchengqi decoction(CQCQD) on the apoptosis-necrosis switch of pancreatic acinar cells in acute necrotizing pancreatitis(ANP) in rats.METHODS: Sixty Sprague-Dawley rats were randomized into the control group, the ANP group and the CQCQD group. The acute pancreatitis(AP)model was induced by intraperitoneal injections of4 g/kg 8% L-Arginine(PH 7.0) twice with a 1 h interval. Rats in the CQCQD group were intragastrically administered CQCQD(20 mL/kg every 2 h, 3 times,then 20 mL/kg every 6 h, 3 times). Rats were killed at the 6 and 24 h after the induction of AP.The pancreatic tissues were collected for pathology and to isolate pancreatic acinar cells and mitochondria.RESULTS: CQCQD significantly ameliorated the severity of ANP by reducing the pancreatic histopathology score, indicated by lactate dehydrogenase levels at the 6 and 24 h. The CQCQD group promoted the apoptosis of pancreatic acinar cells by raising the apoptosis index compared with the ANP group and the control group. Mitochondrial cytochrome c at the 6 and 24 h in the ANP group were lower than that in the control group or the CQCQD group(0.67±0.13 vs 1.54±0.03 vs 0.81±0.09; 0.71±0.08 vs 1.55±0.09 vs 0.89±0.16, P<0.01). The cytochrome c levels in the cytoplasm at the 6 and 2 h in the CQCQD group were higher than in the control group(1.36±0.15 vs 0.67±0.04, 1.46±0.08 vs 0.59±0.09, P<0.01), or the ANP group(0.96±0.13, P>0.05;0.97±0.09, P<0.05). CQCQD increased caspase-3 activity over the ANP group at the 6 h.CONCLUSION: CQCQD can induce apoptosis and relieve the necrosis of pancreatic acinar cells via promoting the release of mitochondrial cytochrome c and increasing pancreatic caspase-3 activity in ANP rats.
基金supported by the National Natural Science Foundation of China (81072084)
文摘Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs ceils for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.
基金National Natural Science Foundation of China(Grant No.31701791,21732002,31672558 and 21502060)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(Grant No.2662017PY113,2015RC013 and 2662015PY208)Open fund of The State Key Laboratory of Bio-organic and Natural Products Chemistry,CAS(Grant No.SKLBNPC16343)。
文摘Triple-negative breast cancer is an aggressive subtype that frequently develops resistance to chemotherapy. It is expected to develop new anti-tumor drugs through targeting the structure of G-quadruplexes of the genes associated with this tumor. In this work, by targeting the 21-mer telomere G-quadruplex structure, compounds VB07 and VC02 were identified to stabilize the telomere G-quadruplex through structure-based high-throughput virtual screening. Cell cytotoxicity assay showed that VB07 and VC02 exhibited inhibitory effect on triple-negative breast cancer cells at the concentration of 5 μM. This study showed that structure-based high-throughput virtual screening was able to successfully identify the proper compounds targeting the telomere G-quadruplex, which exhibited inhibitory effects against the triple-negative breast cancer cells.