A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was st...A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.展开更多
The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were i...The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.展开更多
OPV (Organic photovoltaic) cells represent a compelling candidate for renewable energy by solar energy conversion. In recent years, versatile light-trapping measures via structures have been intensively explored to ...OPV (Organic photovoltaic) cells represent a compelling candidate for renewable energy by solar energy conversion. In recent years, versatile light-trapping measures via structures have been intensively explored to optimize photovoltaic performance. In this work, a unique rubbing technique is demonstrated to create nanoscale grooves on the PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)] surface and the grating-like features are 500 nm wide and 10 nm deep. The PEDOT:PSS film with grooved surface is used as buffer layers for OPV cell devices based on a P3HT:PCBM bulk heterojunction. The patterned surface has a profound effect on carrier mobility, light trapping, and hole collection efficiency, leading to an increase in the short circuit density, filling factor, and power conversion efficiency. These results indicate the feasibility of the rubbing method can be applicable to high-efficiency OPV cells.展开更多
Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes ...Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.展开更多
The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsome...The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.展开更多
Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the ef...Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the effect of substrate temperature on the morphologies and optical properties of the silver island films.At low temperature,below 300 ℃,as the substrate temperature increases.Compared to the films prepared at room temperature,the sizes of nanoparticles decrease and the Absorption peaks shift to shorter wavelength accompanied by an increase density resulting in a 150% Absorption efficiency.As the substrate temperature goes up to 300 ℃,nanoparticles with larger in-plan(X-Y)dimensions are formed,the number density decreases and the Absorption peaks redshift but the Absorption efficiency is still 10% higher.Numerical simulation reveals that these behaviors are a consequence of morphologies transformation.展开更多
Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous bloc...Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous block copolymers can be templates for producing three- dimensional TiO2 networks by combining the atomic layer deposition technique. Thickness adjustable TiO2 network is an excellent alternative scaffold material for efficient per- ovskite solar cells. Our best performing cells using such a 270 nm thick template have achieved a high efficiency of 12.5 % with pristine poly-3-hexylthiophene as a hole transport material. The high performance is attributed to the direct transport pathway and high absorption of scaf- folds, small leakage current and largely reduced recombi- nation rate at interfaces. The results show that TiO2 network architecture is a promising scaffold for meso- scopic perovskite solar cells.展开更多
Objective: To evaluate the clinical efficacy of greater omentum in reconstruction of refractory wounds. Methods: From August 1988 to May 2001, 20 patients with refractory wound underwent pedicle or microvascular f...Objective: To evaluate the clinical efficacy of greater omentum in reconstruction of refractory wounds. Methods: From August 1988 to May 2001, 20 patients with refractory wound underwent pedicle or microvascular free transfer of the greater omentum. Indications of surgery were electrical injury of the wrist and hand in 9 patients, electrical injury of the scalp and cranial bones in 3, avulsion injury of the scalp in 2, radiation-related ulcer of the chest wall in 2, ulcer and osteomyelitis following resection of the sternum sarcoma in 1, electrical injury of the abdomen in 1, bone and soft tissue defects following compound fracture of the leg in 1, and extensive scar and ulcer of the leg and footdrop following trauma in 1. Severe infection and extensive tissue necrosis were present prior to surgical operation in 12 patients. Eleven patients were treated with pedicled omental flaps, and 9 patients with free omental flaps. The size of the omental flaps ranged from 20 cm×12 cm to 38 cm×23 cm. Results: All the omental flaps survived. Healing at the first intention of the wounds was achieved in 17 cases. The on-top skin grafts resulted in partial necrosis of lipid liquefaction developed in the omentum and healed with dressing change in 2 cases. A sinus tract of osteomyelitis occurred in one case and healed after delayed excision of the necrosed bone. Follow-up study of all cases from 3 to 24 months showed no recurrent wounds and post-operative abdominal complication. Recovery with acceptable appearance and restoration of function was satisfactory. Conclusions: Greater omentum provides a well-vascularized tissue with lymphatic ducts for wound coverage. It has strong resistance against infection. It is very malleable and can be molded easily. Therefore it is an ideal tissue in filling cavities and repairing defects, especially in covering large and irregular defects that can not be treated with skin or muscle flaps.展开更多
Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped...Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.展开更多
We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of t...We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of the band position and effective mass caused by the substitution of Se by Te.However,the band gap between the electron-and hole-like bands at the Brillouin zone center decreases towards band inversion and parity exchange,which drive the system to a nontrivial topological state predicted by theoretical calculations.Our results provide a clear experimental indication that the FeTe_(1-x)Se_x monolayer materials are high-temperature connate topological superconductors in which band topology and superconductivity are integrated intrinsically.展开更多
We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis...We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.展开更多
Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the eff...Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.展开更多
文摘A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.
文摘The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.
文摘OPV (Organic photovoltaic) cells represent a compelling candidate for renewable energy by solar energy conversion. In recent years, versatile light-trapping measures via structures have been intensively explored to optimize photovoltaic performance. In this work, a unique rubbing technique is demonstrated to create nanoscale grooves on the PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)] surface and the grating-like features are 500 nm wide and 10 nm deep. The PEDOT:PSS film with grooved surface is used as buffer layers for OPV cell devices based on a P3HT:PCBM bulk heterojunction. The patterned surface has a profound effect on carrier mobility, light trapping, and hole collection efficiency, leading to an increase in the short circuit density, filling factor, and power conversion efficiency. These results indicate the feasibility of the rubbing method can be applicable to high-efficiency OPV cells.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China
文摘Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.
基金This work was supported by the Fhndamental Research Funds for the Central Universities (No.XDJK2015C002) and the National Natural Science Foundation of China (No.51402243). Special thanks are given to Prof. H. J. M Bouwmeester and Dr. N.E. Benes from University of Twente for fruitful discussion.
文摘The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.
基金The Distinguished Youth Foundation of Hunan Province(03JJY1008)The Natural Science Foundation of Hunan Province(06JJ2034)
文摘Due to their particular optical characteristics,metallic island films have the potential to significantly increase the energy conversion efficiency of solar cell.We experimentally and theoretically investigated the effect of substrate temperature on the morphologies and optical properties of the silver island films.At low temperature,below 300 ℃,as the substrate temperature increases.Compared to the films prepared at room temperature,the sizes of nanoparticles decrease and the Absorption peaks shift to shorter wavelength accompanied by an increase density resulting in a 150% Absorption efficiency.As the substrate temperature goes up to 300 ℃,nanoparticles with larger in-plan(X-Y)dimensions are formed,the number density decreases and the Absorption peaks redshift but the Absorption efficiency is still 10% higher.Numerical simulation reveals that these behaviors are a consequence of morphologies transformation.
文摘Mesoscopic lead halide perovskite solar cells typically use TiO2 nanoparticle films as the scaffolds for electron-transport pathway and perovskite deposition. Here, we demonstrate that swelling-induced mesoporous block copolymers can be templates for producing three- dimensional TiO2 networks by combining the atomic layer deposition technique. Thickness adjustable TiO2 network is an excellent alternative scaffold material for efficient per- ovskite solar cells. Our best performing cells using such a 270 nm thick template have achieved a high efficiency of 12.5 % with pristine poly-3-hexylthiophene as a hole transport material. The high performance is attributed to the direct transport pathway and high absorption of scaf- folds, small leakage current and largely reduced recombi- nation rate at interfaces. The results show that TiO2 network architecture is a promising scaffold for meso- scopic perovskite solar cells.
文摘Objective: To evaluate the clinical efficacy of greater omentum in reconstruction of refractory wounds. Methods: From August 1988 to May 2001, 20 patients with refractory wound underwent pedicle or microvascular free transfer of the greater omentum. Indications of surgery were electrical injury of the wrist and hand in 9 patients, electrical injury of the scalp and cranial bones in 3, avulsion injury of the scalp in 2, radiation-related ulcer of the chest wall in 2, ulcer and osteomyelitis following resection of the sternum sarcoma in 1, electrical injury of the abdomen in 1, bone and soft tissue defects following compound fracture of the leg in 1, and extensive scar and ulcer of the leg and footdrop following trauma in 1. Severe infection and extensive tissue necrosis were present prior to surgical operation in 12 patients. Eleven patients were treated with pedicled omental flaps, and 9 patients with free omental flaps. The size of the omental flaps ranged from 20 cm×12 cm to 38 cm×23 cm. Results: All the omental flaps survived. Healing at the first intention of the wounds was achieved in 17 cases. The on-top skin grafts resulted in partial necrosis of lipid liquefaction developed in the omentum and healed with dressing change in 2 cases. A sinus tract of osteomyelitis occurred in one case and healed after delayed excision of the necrosed bone. Follow-up study of all cases from 3 to 24 months showed no recurrent wounds and post-operative abdominal complication. Recovery with acceptable appearance and restoration of function was satisfactory. Conclusions: Greater omentum provides a well-vascularized tissue with lymphatic ducts for wound coverage. It has strong resistance against infection. It is very malleable and can be molded easily. Therefore it is an ideal tissue in filling cavities and repairing defects, especially in covering large and irregular defects that can not be treated with skin or muscle flaps.
基金supported by the National Natural Science Foundation of China(Grant No.51406124)by the Natural Science Foundation of Liaoning Province of China(Grant No.201602576)
文摘Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.
基金supported by grants from the Ministry of Science and Technology of China(2015CB921000,2016YFA0401000,2015CB921301,2016YFA0300300)the National Natural Science Foundation of China(11574371,11274362,1190020,11334012,11274381,11674371)
文摘We performed angle-resolved photoemission spectroscopy studies on a series of FeTe_(1-x)Se_x monolayer films grown on Sr TiO_3.The superconductivity of the films is robust and rather insensitive to the variations of the band position and effective mass caused by the substitution of Se by Te.However,the band gap between the electron-and hole-like bands at the Brillouin zone center decreases towards band inversion and parity exchange,which drive the system to a nontrivial topological state predicted by theoretical calculations.Our results provide a clear experimental indication that the FeTe_(1-x)Se_x monolayer materials are high-temperature connate topological superconductors in which band topology and superconductivity are integrated intrinsically.
文摘We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.
文摘Hydrogenated amorphous Si (a-Si:H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.