以Pd/Al2O3/堇青石为催化剂,硝基苯与氢气为原料,系统地考察了氧化铝涂层的上载量、氢气流速、反应温度以及液体空速对硝基苯气液固三相加氢反应的影响规律。结果表明:较高的涂层上载量能产生较大的Pd颗粒,而在较大的Pd颗粒上反应的活...以Pd/Al2O3/堇青石为催化剂,硝基苯与氢气为原料,系统地考察了氧化铝涂层的上载量、氢气流速、反应温度以及液体空速对硝基苯气液固三相加氢反应的影响规律。结果表明:较高的涂层上载量能产生较大的Pd颗粒,而在较大的Pd颗粒上反应的活性较高;氢气流速对反应并无明显的影响,表明反应器内的流型处于膜状流;反应的表观活化能为6.1 k J/mol,显示外扩散过程对反应的影响很大;硝基苯转化率随着液体空速的增加而不断下降,通过计算不同液相空速时的总传质系数,并与硝基苯的转化率进行关联,发现总传质系数与硝基苯转化率呈良好的线性关系。展开更多
Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 time...Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.展开更多
The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hol...The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.展开更多
文摘以Pd/Al2O3/堇青石为催化剂,硝基苯与氢气为原料,系统地考察了氧化铝涂层的上载量、氢气流速、反应温度以及液体空速对硝基苯气液固三相加氢反应的影响规律。结果表明:较高的涂层上载量能产生较大的Pd颗粒,而在较大的Pd颗粒上反应的活性较高;氢气流速对反应并无明显的影响,表明反应器内的流型处于膜状流;反应的表观活化能为6.1 k J/mol,显示外扩散过程对反应的影响很大;硝基苯转化率随着液体空速的增加而不断下降,通过计算不同液相空速时的总传质系数,并与硝基苯的转化率进行关联,发现总传质系数与硝基苯转化率呈良好的线性关系。
基金the Nahonal NaedScience Foundation of China (No.599060()2) and the Scienhficresereh FOundahon for the Retwed Oversea Chinese
文摘Excellent dropwise condensation of steam was observed on a polytethefluoroethylene (PTFE) coated plate. The experimental results indicated that the condensation heat transfer performance was increased by 30 to 47 times when compared with film condensation values at the same surface subcooling degrees. The random fluctuation of the surface temperature was resulted from the high thermal conductivity of the copper substrate and the ultra thin coated polymer film with lower surface free energy. The effect of the steam temperature for pressures near atmospheric pressure on the dropwise condensation heat transfer characteristics was investigated as well.
文摘The film cooling performance of a trunk-branch hole is investigated by numerical simulation in this paper. The geometry of the hole is a novel cooling concept, which controls the vortices-pair existing at the mink hole outlet using the injection of the branch hole. The trunk-branch holes require easily machinable round hole as compared to the shaped holes. The flow cases were considered at the blowing ratios of 0.5, 0.75, 1.0, 1.5 and 2.0. At the low blowing ratio of 0.5, the vortices-pair at the outlet of the trunk hole is reduced and the laterally coverage of the film is improved. At the high blowing ratio of 2.0, the vortices-pair is killed by the vortex which is produced by the injection of the branch hole. The flow rate of the two outlets becomes more significantly different when the blowing ratio increases from 0.75 to 2.0. The discharge coefficients increase 0.15 and the laterally averaged film effectiveness improve 0.2 as compared to the cylindrical holes. The optimal blowing ratios occur at M=1.0 or M= 1.5 according to the various locations downstream of the holes.