The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to an...The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump.The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.展开更多
Both of planar and mesoporous architectures prevail for perovskite solar cells(PSCs).However,it is still an open question how the architecture affects the performance of PSCs.The inconsistent results in the references...Both of planar and mesoporous architectures prevail for perovskite solar cells(PSCs).However,it is still an open question how the architecture affects the performance of PSCs.The inconsistent results in the references often create confusion.In particular,the specific roles of mesoporous frameworks are yet to be well elaborated and require further clarification.In this study,we carefully compared the properties of perovskite films and the device performances for both architectures to unravel the roles of mesoporous TiO2 framworks in CH3NH3PbI3 PSCs.The detailed characterizations of structural,microscopic,optical and electrical properties revealed that the presence of mesoporous TiO2 framework contributed to enlarged perovskite crystal sizes,enhanced light harvesting,efficient electron extration and suppressed charge recombination.As a result,compared with the planar device,the mesoporous device yielded an improved power conversion efficiency of 18.18%,coupled with a reduced hystersis.This study reveals the benefits of mesoporous TiO2 framework in PSCs and provides the guidance for the design and optimization of architectures for high-performance devices.展开更多
Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-...Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-controlled size and growth direction has remained an elusive target. Here, we introduce a layer-by- layer protocol to grow hybrid thin films of molecule-based magnetic conductors comprising arachidic acid and donor bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) as the organic component and Cu/Gd complexes as the inorganic component. The construction of layered hybrid thin films was achieved at ambient conditions by employing the Langmuir-Blodgett method, which provides good control over film thickness and packing of molecules in the monolayer. As demonstrated by X-ray diffraction, these films are crystalline with distinct organic and inorganic sublattices, where the BEDO-TTF molecular layer is interfaced with the inorganic layer. Due to the flexibility of the Langmuir-Blodgett deposition technique, this result indicates a route toward the preparation of well-ordered films with various functionalities, determined by the choice of the inorganic compound that is combined with the π-unit of BEDO-TFF. Moreover, the ability to deposit films on a variety of substrates establishes the potential for lower-cost device fabrication on inexpensive substrates.展开更多
文摘The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump.The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.
基金financially supported by the National Natural Science Foundation of China(51602088)the Open Fund of the Key Laboratory of Photovoltaic and Energy Conservation Materials,Chinese Academy of Sciences(PECL2019KF007)and China Postdoctoral Science Foundation(2017T100313)。
文摘Both of planar and mesoporous architectures prevail for perovskite solar cells(PSCs).However,it is still an open question how the architecture affects the performance of PSCs.The inconsistent results in the references often create confusion.In particular,the specific roles of mesoporous frameworks are yet to be well elaborated and require further clarification.In this study,we carefully compared the properties of perovskite films and the device performances for both architectures to unravel the roles of mesoporous TiO2 framworks in CH3NH3PbI3 PSCs.The detailed characterizations of structural,microscopic,optical and electrical properties revealed that the presence of mesoporous TiO2 framework contributed to enlarged perovskite crystal sizes,enhanced light harvesting,efficient electron extration and suppressed charge recombination.As a result,compared with the planar device,the mesoporous device yielded an improved power conversion efficiency of 18.18%,coupled with a reduced hystersis.This study reveals the benefits of mesoporous TiO2 framework in PSCs and provides the guidance for the design and optimization of architectures for high-performance devices.
文摘Enabling the use of rationally designed thin films in technological devices is a recognized goal in materials science. However, constructing such thin films using highly ordered supramolecular architectures with well-controlled size and growth direction has remained an elusive target. Here, we introduce a layer-by- layer protocol to grow hybrid thin films of molecule-based magnetic conductors comprising arachidic acid and donor bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) as the organic component and Cu/Gd complexes as the inorganic component. The construction of layered hybrid thin films was achieved at ambient conditions by employing the Langmuir-Blodgett method, which provides good control over film thickness and packing of molecules in the monolayer. As demonstrated by X-ray diffraction, these films are crystalline with distinct organic and inorganic sublattices, where the BEDO-TTF molecular layer is interfaced with the inorganic layer. Due to the flexibility of the Langmuir-Blodgett deposition technique, this result indicates a route toward the preparation of well-ordered films with various functionalities, determined by the choice of the inorganic compound that is combined with the π-unit of BEDO-TFF. Moreover, the ability to deposit films on a variety of substrates establishes the potential for lower-cost device fabrication on inexpensive substrates.