Ni-Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide(SPO) ligand, are used...Ni-Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide(SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni-Al bimetallic catalytic system and highlight recent advances in enantioselective Ni-Al bimetallic catalysis for unreactive bond transformation.展开更多
基金supported by the National Natural Science Foundation of China (21672107)the “1000-Youth Talents Plan”
文摘Ni-Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide(SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni-Al bimetallic catalytic system and highlight recent advances in enantioselective Ni-Al bimetallic catalysis for unreactive bond transformation.