Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP...Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.展开更多
A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded a...A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.展开更多
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.
文摘A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.