期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的RetinaNet医药空瓶表面气泡检测 被引量:8
1
作者 吴华运 任德均 +3 位作者 吕义钊 胡彬 付磊 邱吕 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期1090-1095,共6页
医药空瓶在生产过程中瓶身表面会产生大量的气泡缺陷,但现有的方法对医药空瓶表面气泡检测存在各种问题,例如对复杂场景变化的鲁棒性不强,抗噪声干扰能力弱等.针对现有医药空瓶表面的气泡缺陷,提出了一种改进的深度学习目标检测算法Reti... 医药空瓶在生产过程中瓶身表面会产生大量的气泡缺陷,但现有的方法对医药空瓶表面气泡检测存在各种问题,例如对复杂场景变化的鲁棒性不强,抗噪声干扰能力弱等.针对现有医药空瓶表面的气泡缺陷,提出了一种改进的深度学习目标检测算法RetinaNet对瓶身气泡进行检测.对原始RetinaNet算法中的特征金字塔网络结构进行了优化,在特征融合过程中引入了特征增强模块,用来提高网路对图像语义特征的提取,增强网络特征提取能力.为了减少模型的参数数目和计算时间,考虑到空瓶表面气泡均为小目标缺陷,去掉原始特征金字塔网络中用于检测大目标的网络结构,提高了算法检测速度.通过对标准的ResNet50网络进行重新组合,并引进了膨胀卷积模块,扩大特征图感受野,提高了模型检测的精度.通过在注塑空瓶数据集上对本文的方法进行了验证,其准确率为99.72%,漏检率为0.12%,误检率为0.16%,mAP为99.49%,相比原始的RetinaNet的mAP提高了接近2.4%. 展开更多
关键词 缺陷检测 特征增强模块 膨胀卷积模块 卷积神经网络 特征金字塔网络
下载PDF
改进RFBnet网络的船只目标检测方法 被引量:2
2
作者 方健 刘坤 《计算机工程与应用》 CSCD 北大核心 2022年第12期155-162,共8页
针对目前舰船目标检测中,多目标情况下的舰船目标很容易被多目标遮挡,造成舰船目标漏检、分类错误等问题,提出了一种基于改进RFBnet(I-RFBnet)的自然图像目标检测方法。使用池化特征融合模块(PFF)和反卷积特征融合模块(DFF)进行特征融合... 针对目前舰船目标检测中,多目标情况下的舰船目标很容易被多目标遮挡,造成舰船目标漏检、分类错误等问题,提出了一种基于改进RFBnet(I-RFBnet)的自然图像目标检测方法。使用池化特征融合模块(PFF)和反卷积特征融合模块(DFF)进行特征融合,形成新的六个有效特征层。提出一种跨步长卷积方式来提取特征单元在原图中的关心区域信息,设计了融入注意力机制的膨胀卷积模块(dilate convolutions block,DB)和新的前三个有效特征层再次进行特征融合。引入聚焦分类损失函数解决训练过程中正负样本分布不均衡的问题;最后通过对规模船只检测数据集SeaShips训练后,保存其模型。实验结果表明:改进后的算法检测效果良好,尤其在多目标遮挡下的小目标效果显著。平均精度均值为96.26%,比改进前的算法提高了4.74个百分点,帧率达到26 FPS(frame per second),满足实时检测的需求。 展开更多
关键词 舰船检测 注意力机制 膨胀卷积模块 特征融合 小目标
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部