MgO-series expansive agents can effectively compensate for the shrinkage and deformation of concrete structures.However,few experimental studies have been conducted on MgO expansive agents,particularly concerning the ...MgO-series expansive agents can effectively compensate for the shrinkage and deformation of concrete structures.However,few experimental studies have been conducted on MgO expansive agents,particularly concerning the difference between and effects of submicron-MgO and nano-MgO in high-performance concrete(HPC)with a low water-cement ratio,thereby limiting their application in practical engineering.To clarify the expansion effect and expansion mechanism of MgO expansive agents in HPC,the effects of submicron-MgO and nano-MgO on the strength,toughness,and expansion characteristics of HPC were examined.The test results showed that submicron-MgO and nano-MgO continued to hydrate in the cement environment to produce Mg(OH)_(2),thus improving the structural compactness and structural strength of HPC.Nano-MgO concrete was found to have more stable mechanical properties and better structural deformability than submicron-MgO concrete.This study provides effective data support and theoretical reference concerning the hydration expansion mechanisms and engineering applications of nano-expanded materials.展开更多
The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are i...The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.展开更多
基金Project(51578325) supported by the National Natural Science Foundation of China。
文摘MgO-series expansive agents can effectively compensate for the shrinkage and deformation of concrete structures.However,few experimental studies have been conducted on MgO expansive agents,particularly concerning the difference between and effects of submicron-MgO and nano-MgO in high-performance concrete(HPC)with a low water-cement ratio,thereby limiting their application in practical engineering.To clarify the expansion effect and expansion mechanism of MgO expansive agents in HPC,the effects of submicron-MgO and nano-MgO on the strength,toughness,and expansion characteristics of HPC were examined.The test results showed that submicron-MgO and nano-MgO continued to hydrate in the cement environment to produce Mg(OH)_(2),thus improving the structural compactness and structural strength of HPC.Nano-MgO concrete was found to have more stable mechanical properties and better structural deformability than submicron-MgO concrete.This study provides effective data support and theoretical reference concerning the hydration expansion mechanisms and engineering applications of nano-expanded materials.
基金supported by the National Natural Science Foundation of China (Grant No. 50974125)the National Basic Research Program of China ("973" Project) (Grant Nos.2010CB226804,2002CB412705)the Beijing Key Laboratory Projects
文摘The thermophysical properties,such as thermal conductivity,thermal diffusivity,specific heat capacity and linear thermal expansion of reactive powder concrete(RPC) with different steel fiber volumetric fractions are investigated by means of high temperature tests. The thermophysical characteristics of RPC with different fiber volumes under different temperatures are analyzed and compared with those of the common high-strength concrete and high-performance concrete. The empirical relationships of thermophysical properties with temperature and fiber volume are identified. By the heat transfer and solid physics methods,the microscopic physical mechanism of heat transfer process and heat conduction properties of RPC are investigated,and the theoretical formulas of specific heat capacity and thermal expansion coefficient are derived,respectively. The effects of temperature and steel fibers on the specific heat capacity and the thermal expansion coefficient are quantitatively analyzed and the discriminant conditions are provided. It is shown that the experimental results are consistent with the theoretical prediction.