A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacia...A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacial residual stress induced by thermal expansion coefficient (TEC) mismatch is introduced via thermo-elastic constitutive relations.The influence of vdW interactions between two layers of DWCNT on the interfacial stress distributions of DWCNT and matrix is analyzed.The analytical expressions of interfacial shear stress and the axial stresses of DWCNT and matrix are derived,respectively.Furthermore,the influences of temperature change,interfacial friction coefficient,DWCNT aspect ratio,DWCNT volume fraction and the relative modulus between DWCNT and matrix are illustrated and discussed.展开更多
In the framework of continuum thermodynamics, the present paper presents the thermo-hyperelastic models for both the surface and the bulk of nanostructured materials, in which the residual stresses are taken into acco...In the framework of continuum thermodynamics, the present paper presents the thermo-hyperelastic models for both the surface and the bulk of nanostructured materials, in which the residual stresses are taken into account. Due to the existence of residual stresses, different configuration descriptions of the surface (or the bulk) thermo-hyperelastic constitutive equations are not the same even in the cases of infinitesimal deformation. As an example, the effective thermal expansion coefficient of spherical nanoparticles is analyzed.展开更多
基金supported by the National Natural Science Foundation of China (Grant no. 10802057 and 51075298)the Key Program of National Natural Science Foundation of China (Grant no. 10732080)the National Basic Research Program of China (973 Program,Grant no.2012CB937500)
文摘A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacial residual stress induced by thermal expansion coefficient (TEC) mismatch is introduced via thermo-elastic constitutive relations.The influence of vdW interactions between two layers of DWCNT on the interfacial stress distributions of DWCNT and matrix is analyzed.The analytical expressions of interfacial shear stress and the axial stresses of DWCNT and matrix are derived,respectively.Furthermore,the influences of temperature change,interfacial friction coefficient,DWCNT aspect ratio,DWCNT volume fraction and the relative modulus between DWCNT and matrix are illustrated and discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60936001, 10772180, 10902111)the National Basic Research Program of China (Grant No. 2007CB310500)the Foundamental Research Funds for the Central Universities (Grant No. 2010ZY33)
文摘In the framework of continuum thermodynamics, the present paper presents the thermo-hyperelastic models for both the surface and the bulk of nanostructured materials, in which the residual stresses are taken into account. Due to the existence of residual stresses, different configuration descriptions of the surface (or the bulk) thermo-hyperelastic constitutive equations are not the same even in the cases of infinitesimal deformation. As an example, the effective thermal expansion coefficient of spherical nanoparticles is analyzed.