Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization ...Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization of uncured styrene butadiene rubber (SBR), 4-tert-butylstyrene (tBS) and ethylene-propylenc-diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a pre-polymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with the method ASTM (F726-81). The order of maximum oil absorbency was PBES>PBS>PES>PS. The maximum values of oil absorbency of PBES and PBS were 74.0g/g and 69.5g/g, respectively. Gel fractions and swelling kinetic constants, however, had the opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49. 97×10^(-2)h^(-1).展开更多
Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effec...Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.展开更多
文摘Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization of uncured styrene butadiene rubber (SBR), 4-tert-butylstyrene (tBS) and ethylene-propylenc-diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a pre-polymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with the method ASTM (F726-81). The order of maximum oil absorbency was PBES>PBS>PES>PS. The maximum values of oil absorbency of PBES and PBS were 74.0g/g and 69.5g/g, respectively. Gel fractions and swelling kinetic constants, however, had the opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49. 97×10^(-2)h^(-1).
文摘Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.