Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
A density-based partitioning strategy is proposed for large domain networks in order to deal with the scalability issue found in autonomic networks considering, as a scenario, the autonomic Quality of Service (QoS) ...A density-based partitioning strategy is proposed for large domain networks in order to deal with the scalability issue found in autonomic networks considering, as a scenario, the autonomic Quality of Service (QoS) management context. The approach adopted focus as on obtaining dense network partitions having more paths for a given vertices set in the domain. It is demonstrated that dense partitions improve autonomic processing scalability, for instance, reducing routing process complexity. The solution looks for a significant trade-off between partition autonomic algorithm execution time and path selection quality in large domains. Simulation scenarios for path selection execution time are presented and discussed. Authors argue that autonomic networks may benefit from the dense partition approach proposed by achieving scalable, efficient and near real-time support for autonomic management systems.展开更多
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
文摘A density-based partitioning strategy is proposed for large domain networks in order to deal with the scalability issue found in autonomic networks considering, as a scenario, the autonomic Quality of Service (QoS) management context. The approach adopted focus as on obtaining dense network partitions having more paths for a given vertices set in the domain. It is demonstrated that dense partitions improve autonomic processing scalability, for instance, reducing routing process complexity. The solution looks for a significant trade-off between partition autonomic algorithm execution time and path selection quality in large domains. Simulation scenarios for path selection execution time are presented and discussed. Authors argue that autonomic networks may benefit from the dense partition approach proposed by achieving scalable, efficient and near real-time support for autonomic management systems.