期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进YOLOv5对病理图像下噪声标签的检测与自动纠正应用
1
作者
张祯阳
叶萍
常兆华
《软件导刊》
2024年第3期157-164,共8页
病理图像细胞检测是医学诊断的基础部分,正确、精准地检测靶向细胞及其数量对疾病诊疗至关重要。传统医学采用手工镜检的估计方式检测病理图像,依赖病理医生的工作经验,存在主观性、检测精度较低的问题。为此,提出改进YOLOv5的噪声标签...
病理图像细胞检测是医学诊断的基础部分,正确、精准地检测靶向细胞及其数量对疾病诊疗至关重要。传统医学采用手工镜检的估计方式检测病理图像,依赖病理医生的工作经验,存在主观性、检测精度较低的问题。为此,提出改进YOLOv5的噪声标签检测与自动纠正网络检测病理图像中的靶向细胞,通过Conf、IOU函数使网络具有区分真值标签和噪声标签的能力,从而实现噪声标签的自动纠正,以辅助医生对鼻窦炎疾病类型进行临床诊断。结果表明,改进网络在鼻窦炎病理图像数据集上的平均精度、召回率分别提升至88.9%和95.6%,可满足检测病理图像的精度和纠正噪声标签的需求。
展开更多
关键词
数字病理图像
无监督
噪声标签
深度学习
自主纠正
下载PDF
职称材料
题名
改进YOLOv5对病理图像下噪声标签的检测与自动纠正应用
1
作者
张祯阳
叶萍
常兆华
机构
上海理工大学
出处
《软件导刊》
2024年第3期157-164,共8页
文摘
病理图像细胞检测是医学诊断的基础部分,正确、精准地检测靶向细胞及其数量对疾病诊疗至关重要。传统医学采用手工镜检的估计方式检测病理图像,依赖病理医生的工作经验,存在主观性、检测精度较低的问题。为此,提出改进YOLOv5的噪声标签检测与自动纠正网络检测病理图像中的靶向细胞,通过Conf、IOU函数使网络具有区分真值标签和噪声标签的能力,从而实现噪声标签的自动纠正,以辅助医生对鼻窦炎疾病类型进行临床诊断。结果表明,改进网络在鼻窦炎病理图像数据集上的平均精度、召回率分别提升至88.9%和95.6%,可满足检测病理图像的精度和纠正噪声标签的需求。
关键词
数字病理图像
无监督
噪声标签
深度学习
自主纠正
Keywords
digital pathological image
unsupervision
noise labels
deep learning
self-correction
分类号
TP311.51 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进YOLOv5对病理图像下噪声标签的检测与自动纠正应用
张祯阳
叶萍
常兆华
《软件导刊》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部