Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient....Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.展开更多
Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular a...Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular ad hoc network (VANET). Firstly, the relationship among anonymity degree, expected company area and vehicle density is discussed. Then, a companion set F is set up by k neighbor vehicles. Based on secure multi-party computation, each vehicle in V can compute the centroid, not revealing its location to each other. The centroid as a cloaking location is sent to LBS provider (P) and P returns a point of interest (POI). Due to a distributed secret sharing structure, P cannot obtain the positions of non-complicity vehicles by colluding with multiple internal vehicles. To detect fake data from dishonest vehicles, zero knowledge proof is adopted. Comparing with other related methods, our solution can resist passive and active attacks from internal and external nodes. It provides strong privacy protection for LBS in VANET.展开更多
基金Natural Science Foundation of Gansu Province(No.1310RJZA061)。
文摘Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.
基金the National Natural Science Foundation of China,by the Natural Science Foundation of Anhui Province,by the Specialized Research Fund for the Doctoral Program of Higher Education of China,the Fundamental Research Funds for the Central Universities
文摘Existing location privacy- preserving methods, without a trusted third party, cannot resist conspiracy attacks and active attacks. This paper proposes a novel solution for location based service (LBS) in vehicular ad hoc network (VANET). Firstly, the relationship among anonymity degree, expected company area and vehicle density is discussed. Then, a companion set F is set up by k neighbor vehicles. Based on secure multi-party computation, each vehicle in V can compute the centroid, not revealing its location to each other. The centroid as a cloaking location is sent to LBS provider (P) and P returns a point of interest (POI). Due to a distributed secret sharing structure, P cannot obtain the positions of non-complicity vehicles by colluding with multiple internal vehicles. To detect fake data from dishonest vehicles, zero knowledge proof is adopted. Comparing with other related methods, our solution can resist passive and active attacks from internal and external nodes. It provides strong privacy protection for LBS in VANET.