期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
自伴算子空间上满足[Φ(A^2),Φ(A)]=0的可加满射 被引量:1
1
作者 齐霄霏 杜拴平 侯晋川 《数学物理学报(A辑)》 CSCD 北大核心 2010年第6期1686-1692,共7页
令H为维数大于2的复Hilbert空间,B_s(H)为H上所有有界自伴算子构成的实线性空间.该文给出B_s(H)上满足[Φ(A^2),Φ(A)]=0对所有A∈B_s(H)成立的可加双射Φ的刻画,在Φ(F_s(H))■RI或RI■Φ(RI)的条件下证明了上述Φ具有形式Φ(A)=cUAU*+... 令H为维数大于2的复Hilbert空间,B_s(H)为H上所有有界自伴算子构成的实线性空间.该文给出B_s(H)上满足[Φ(A^2),Φ(A)]=0对所有A∈B_s(H)成立的可加双射Φ的刻画,在Φ(F_s(H))■RI或RI■Φ(RI)的条件下证明了上述Φ具有形式Φ(A)=cUAU*+f(A)I,A∈B_s(H),其中c∈R,c≠0,U:H→H是酉算子或共轭酉算子,而f是B_s(H)上的可加泛函. 展开更多
关键词 可加映射 交换性 Jordan同态 自伴算子空间
下载PDF
自伴算子空间和对称算子空间上保粘切性的映射(英文) 被引量:1
2
作者 安润玲 狄青会 +2 位作者 杜雪峰 侯晋川 赵连阔 《山西师范大学学报(自然科学版)》 2004年第2期1-5,共5页
本文分别将华氏自伴矩阵几何与对称矩阵几何基本定理推广到无限维的情形。作为应用,获得自伴算子空间和对称算子空间上的约当环同构的具体刻画.
关键词 自伴算子空间 对称算子空间 保粘切性映射 对称矩阵几何 约当环
下载PDF
自伴算子空间上满足[φ(A^2),A]+[A^2,φ(A)]=0的可加映射
3
作者 张芳娟 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期715-718,共4页
运用算子论的方法,研究了自伴算子空间上满足[φ(A2),A]+[A2,φ(A)]=0的可加映射。如果可加映射φ:Bs(H)→Bs(H)满足对所有A∈Bs(H)有[φ(A2),A]+[A2,φ(A)]=0,那么存在λ∈R,可加映射f:Bs(H)→R,以及算子K∈Bs(H),使得对所有A∈Bs(H)有... 运用算子论的方法,研究了自伴算子空间上满足[φ(A2),A]+[A2,φ(A)]=0的可加映射。如果可加映射φ:Bs(H)→Bs(H)满足对所有A∈Bs(H)有[φ(A2),A]+[A2,φ(A)]=0,那么存在λ∈R,可加映射f:Bs(H)→R,以及算子K∈Bs(H),使得对所有A∈Bs(H)有φ(A)=iAK-iKA+λA+f(A)I。即自伴算子空间上满足[φ(A2),A]+[A2,φ(A)]=0的可加映射是导子与可交换映射之和。 展开更多
关键词 可加映射 可导 自伴算子空间
下载PDF
零点(Ⅰ点)Jordan可导映射
4
作者 张芳娟 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期772-774,共3页
目的研究自伴算子空间上的零点Jordan可导映射和von Neumann代数上的Ⅰ点Jordan可导映射。方法算子论方法。结果设H是无限维的Hilbert空间,Sa(H)表示B(H)上所有自伴算子组成的实线性子空间。设ф:Sa(H)→Sa(H)上零点Jordan可导映射,则... 目的研究自伴算子空间上的零点Jordan可导映射和von Neumann代数上的Ⅰ点Jordan可导映射。方法算子论方法。结果设H是无限维的Hilbert空间,Sa(H)表示B(H)上所有自伴算子组成的实线性子空间。设ф:Sa(H)→Sa(H)上零点Jordan可导映射,则存在数λ∈R和算子S∈B(H),使得对所有的A∈Sa(H),有ф(A)=SA+AS*-λA。令M和N是两个von Neumann代数。ф是从M到N的范数连续的I点Jordan可导线性映射,则ф是一个内导子。结论自伴算子空间上的零点Jordan可导映射是广义内导子与数乘算子之和;von Neumann代数上范数连续的I点Jordan可导映射是一个内导子。 展开更多
关键词 零点Jordan可导 I点Jordan可导 自伴算子空间 von NEUMANN代数
下载PDF
TOEPLITZ OPERATORS AND ALGEBRAS ON DIRICHLET SPACES 被引量:7
5
作者 CAO GUANGFU Department of Mathematics, Sichuan University, Chengdu 610064, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第3期385-396,共12页
The automorphism group of the Toeplitz C^*- algebra, J(C^1), generated by Toeplitz op-erators with C^1-symbols on Dirichlet space D is discussed; the K0, K1-groups and the first cohomology group of J(C^1) are compute... The automorphism group of the Toeplitz C^*- algebra, J(C^1), generated by Toeplitz op-erators with C^1-symbols on Dirichlet space D is discussed; the K0, K1-groups and the first cohomology group of J(C^1) are computed. In addition, the author proves that the spectra of Toeplitz operators with C^1-symbols are always connected, and discusses the algebraic prop-erties of Toeplitz operators.In particular, it is proved that there is no nontrivial selfadjoint Toeplitz operator on D and Tψ^* = Tψ^- if and only if Tψ is a scalar operator. 展开更多
关键词 Dirichlet space Toeplitz operator Toeplitz algebra
原文传递
Time Operator in Relativistic Quantum Mechanics
6
作者 Sina Khorasani 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第7期35-38,共4页
It is first shown that the Dirac's equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 x 4 relativistic time oper... It is first shown that the Dirac's equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 x 4 relativistic time operator for spin-l/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly sma/l but non- zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli's objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found. 展开更多
关键词 quantum mechanics special relativity foundations of quantum mechanics operator theory
原文传递
Some Abstract Critical Point Theorems for Self-adjoint Operator Equations and Applications
7
作者 Chungen LIU Qi WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第1期1-14,共14页
By using the index theory for linear bounded self-adjoint operators in a Hilbert space related to a fixed self-adjoint operator A with compact resolvent,the authors discuss the existence and multiplicity of solutions ... By using the index theory for linear bounded self-adjoint operators in a Hilbert space related to a fixed self-adjoint operator A with compact resolvent,the authors discuss the existence and multiplicity of solutions for(nonlinear) operator equations,and give some applications to some boundary value problems of first order Hamiltonian systems and second order Hamiltonian systems. 展开更多
关键词 Self-adjoint operator equations Index theory Relative Morse index Dual variational method Morse theory Hamiltonian systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部