The authors extend Hua’s fundamental theorem of the geometry of Hermitian matri- ces to the in?nite-dimensional case. An application to characterizing the corresponding Jordan ring automorphism is also presented.
In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-...In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-Liouville differential expression. Then, using the characteristic determinant, we prove the completeness of the system of eigenfunctions and associated functions for these dissipative operators.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10471082) and the ShanxiProvincial Natural Science Foundation of China.
文摘The authors extend Hua’s fundamental theorem of the geometry of Hermitian matri- ces to the in?nite-dimensional case. An application to characterizing the corresponding Jordan ring automorphism is also presented.
基金The author is partially supported by the Nature Science Foundation of Guangdong(5012285)the"Thousand,Hundred,Ten"Science Foundation of Guangdong(Q02052)the Nature Science Foundation of Education Bureau of Guangdong(Z02075)
文摘In this paper, non-self-adjoint Sturm-Liuville operators in Weyl's limit-circle case are studied. We first determine all the non-self-adjoint boundary conditions yielding dissipative operators for each allowed Sturm-Liouville differential expression. Then, using the characteristic determinant, we prove the completeness of the system of eigenfunctions and associated functions for these dissipative operators.