期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
清晰度对自信预测效应的影响 被引量:41
1
作者 毕重增 黄希庭 《心理科学》 CSSCI CSCD 北大核心 2006年第2期271-273,共3页
清晰度是自我概念的一个重要特点。本研究采用自信心清晰度问卷、总体自信问卷、GHQ-20为工具,对自信水平、自信清晰度在自信对心理健康的预测效应中所起的作用进行了探讨。研究发现,自信水平、自信清晰度对心理健康均具有显著的预测作... 清晰度是自我概念的一个重要特点。本研究采用自信心清晰度问卷、总体自信问卷、GHQ-20为工具,对自信水平、自信清晰度在自信对心理健康的预测效应中所起的作用进行了探讨。研究发现,自信水平、自信清晰度对心理健康均具有显著的预测作用;考虑清晰度后,自信水平对GHQ-焦虑、抑郁、自我肯定的回归效应被清晰度部分解;表明清晰度是自信预测效应的调节因素。 展开更多
关键词 清晰度 自信清晰度 GHQ-20 自信预测效应 心理健康
下载PDF
动态一致自信的深度半监督学习 被引量:1
2
作者 李勇 高灿 +1 位作者 刘子荣 罗金涛 《计算机科学与探索》 CSCD 北大核心 2022年第11期2557-2564,共8页
基于一致性正则化和熵最小化的深度半监督学习方法可以有效提升大型神经网络的性能,减少对标记数据的需求。然而,现有一致性正则化方法的正则损失没有考虑样本之间的差异及错误预测的负面影响,而熵最小化方法则不能灵活调节预测概率分... 基于一致性正则化和熵最小化的深度半监督学习方法可以有效提升大型神经网络的性能,减少对标记数据的需求。然而,现有一致性正则化方法的正则损失没有考虑样本之间的差异及错误预测的负面影响,而熵最小化方法则不能灵活调节预测概率分布。首先,针对样本之间的差别以及错误预测带来的负面影响,提出了新的一致性损失函数,称为动态加权一致性正则化(DWCR),可以实现对无标记数据一致性损失的动态加权。其次,为了进一步调节预测概率分布,提出了新的促进低熵预测的损失函数,称为自信促进损失(SCPL),能灵活调节促进模型输出低熵预测的强度,实现类间的低密度分离,提升模型的分类性能。最后,结合动态加权一致性正则化、自信促进损失与有监督损失,提出了名为动态一致自信(DCC)的深度半监督学习方法。多个数据集上的实验表明,所提出方法的分类性能优于目前较先进的深度半监督学习算法。 展开更多
关键词 深度半监督学习 图像分类 动态加权一致性 自信预测 低密度分离
下载PDF
Blind Adaptive MMSE Equalization of Underwater Acoustic Channels Based on the Linear Prediction Method
3
作者 张银兵 赵俊渭 +1 位作者 郭业才 李金明 《Journal of Marine Science and Application》 2011年第1期113-120,共8页
The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with ... The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO) acoustic channels was analyzed by using the linear prediction method.Minimum mean square error (MMSE) blind equalizers with arbitrary delay were described on a basis of channel identification.Two methods for calculating linear MMSE equalizers were proposed.One was based on full channel identification and realized using RLS adaptive algorithms,and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms,respectively.Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels.The results show that the proposed algorithms are robust enough to channel order mismatch.They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR. 展开更多
关键词 linear prediction blind equalization channel identification second order statistics MMSE
下载PDF
Predicting Potential Distribution of Gaur (Bos gaurus) in Tadoba-Andhari Tiger Reserve, Central India
4
作者 Ambica Paliwal Vinod Bihari Mathur 《Journal of Life Sciences》 2012年第9期1041-1049,共9页
The rapid pace of development of GIS (geographical information system) has assisted in identification of conservation priority sites by delineating species distribution using models on habitat suitability. Gaur, Bos... The rapid pace of development of GIS (geographical information system) has assisted in identification of conservation priority sites by delineating species distribution using models on habitat suitability. Gaur, Bos gaurus, is categorized as "Vulnerable" in the IUCN Red List of Threatened Species, 2009. The study has used ENFA (ecological niche factor analysis) to understand the distribution status of Gaur in TATR (Tadoba-Andhari Tiger Reserve), Central India. TATR was sampled using stratified random sampling strategy. A total of 21 continuous variables were used, categorised under 4 environmental descriptors categories viz. habitat, anthropogenic, topographic and hydrological variables. All the variables were tested for the correlation and one of the variable among strongly correlated (r 〉 0.7) variables was discarded to avoid redundancy. A total of 14 variables were retained. The model resulted in marginality of 0.56 and specialization of 2.608. Presence of Gaur showed the positive association with canopy density classes (〈 30% & 40-60%) and open forest. However, it was negatively associated with elevation, non-forest, riparian forest, scrub and teak forest. The study has delineated the areas where appropriate habitat conditions exist to sustain Gaur populations vital for planning strategies for conservation of this megaherbivore species in tropical forests. 展开更多
关键词 Ecological niche factor analysis (ENFA) Gaur (Bos gaurus) Central India habitat suitability.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部