Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the prot...Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the protons gave the PGTACs excellent catalytic activity and selectivity in the esterifica- tion of terpenols. These PGTACs are "reaction-induced self-separation catalysts" and can be easily reused. The kinetics with PGTACs as catalyst in the esterification of geraniol were also studied for use in engineering design.展开更多
Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reform- ing reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effec...Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reform- ing reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600℃, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.展开更多
Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge...Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.展开更多
Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distri...Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distribution. The autoxidation of cyclopentane, cyclohexane, cycloheptane and cyclooctane occurs at 120 ℃, 130 ℃, 120 ℃, and 105 ℃ respectively, with obvious oxidized products formation. At 140 ℃, 145 ℃, 130 ℃ and 125 ℃, acceptable yields of the oxidized products could be obtained for them, and the oxidized product distributions were investigated in detail. The autoxidation of cycloalkanes follows the pseudo-first-order kinetic model and the apparent activation energies (Ea) for the autoxidation of cyclopentane and cyclohexane are 159.76 kJ. tool-1 and 86.75 kJ. mol-1 respectively. This study can act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes in the attempt to enhance the oxidized product selectivity.展开更多
Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(...Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.展开更多
Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microsco...Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.展开更多
The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is d...The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is demonstrated that trace amounts of Sb flux are capable of tuning the geometry of NWs, i.e., enhancing lateral growth and suppressing axial growth. We attribute this behavior to the surfactant effect of Sb which results in modifications to the kinetic and thermodynamic processes. A thermodynamic mechanism that accounts for Sb segregation in InAsSb NWs is also elucidated. This study opens a new route towards precisely controlled NW geometries by means of Sb addition.展开更多
The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of an...The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of anthraquinone-based COFs(i.e.,AAn-COF and OH-AAn-COF)with tunable 1D superstructures(e.g.,nanofibers(NF)and hollow tubes(HT))have been produced via Schiff-base condensation reaction.Interestingly,a rarely reported nanosheet-based self-template mechanism and a nanosheet-crimping mechanism have been demonstrated for the production of COF-based nanofibers and hollow tubes,respectively.Besides,the obtained COF-based superstructures can be post-modified with transition metals for efficient CO_(2)RR.Specifically,AAn-COF-Cu(NF)and OH-AAn-COF-Cu(HT)exhibit superior faradaic-efficiency with CH_(4)(FECH_(4))of 77%(-128.1 mA cm^(-2),-0.9 V)and 61%(-99.5 mA cm^(-2),-1.0 V)in a flow-cell,respectively.Noteworthy,the achieved FECH_(4) of AAn-COF-Cu(NF)(77%)is the highest one among reported crystalline COFs.This work provides a general methodology in exploring morphology-controlled COFs for electrocatalytic CO_(2)RR.展开更多
A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide(NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium algi...A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide(NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium alginate were alternately loaded onto the surface of electrospun polycaprolactone matrix via electrostatic layer-by-layer self-assembly. This material revealed significant NO generation when contacting NO donor S-nitrosoglutathione(GSNO). Adhesion and spreading of smooth muscle cells were inhibited on this material in the presence of GSNO, while proliferation of endothelial cells was promoted. In vitro platelet adhesion and arteriovenous shunt experiments demonstrated good antithrombotic properties of this material, with inhibited platelet activation and aggregation, and prevention of acute thrombosis. This study may provide a new method of improving cellular function and antithrombotic property of vascular grafts.展开更多
Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modif...Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modification could be used as Fenton-like catalysts. Surface doping of Ti O2 could concentrate the pollutants surrounding the Fe3O4 catalyst, which might benefit the catalytic performance of Fe3O4. Herein, we reported that Ti O2-doped Fe3O4 nanoparticles(NPs) could be used as high-performance Fenton-like catalyst for dye decoloration in near neutral environment, where the doping of Ti O2 on Fe3O4 surface dramatically improved the catalytic activity of Fe3O4 in Fenton-like reaction. Ti O2-doped Fe3O4 NPs catalyzed the decomposition of H2O2 to oxidize methylene blue without external energy supply, resulting in effective decoloration. Ti O2-doped Fe3O4 NPs showed high catalytic activity under various p H values and even in the presence of radical scavenger. More catalysts and H2O2 would facilitate the decoloration. At higher temperature, the decoloration became faster and more effective. The implication to the environmental applications of Ti O2-doped Fe3O4 NPs is discussed.展开更多
A simple and efficient system for Suzuki cross-coupling reactions was developed using a ligandless catalyst of Pd nanoclusters generated in situ from Pd(acac)2. The cross-coupling reactions proceeded under mild reacti...A simple and efficient system for Suzuki cross-coupling reactions was developed using a ligandless catalyst of Pd nanoclusters generated in situ from Pd(acac)2. The cross-coupling reactions proceeded under mild reaction conditions with a high reaction rate(5 min) to give various biaryls in high yields. The system also exhibited catalytic potential for Heck reaction between aryl bromides and styrene.展开更多
基金supported by the National Natural Science Foundation of China (21376115, 21576129)~~
文摘Special proton-gradient-transfer acid complexes (PGTACs) in which the bonded protons are not equivalent and have gradients in transfer ability, acidity, and reactivity were reported. The acidity gradient of the protons gave the PGTACs excellent catalytic activity and selectivity in the esterifica- tion of terpenols. These PGTACs are "reaction-induced self-separation catalysts" and can be easily reused. The kinetics with PGTACs as catalyst in the esterification of geraniol were also studied for use in engineering design.
文摘Autothermal steam reforming (ATR) of bio-oil, which couples the endothermic steam reform- ing reaction with the exothermic partial oxidation, offers many advantages from a technical and economic point of view. Effective production of hydrogen through ATR of bio-oil was performed at lower temperature with NiCuZnAl catalyst. The highest hydrogen yield from bio-oil reached 64.3% with a nearly complete bio-oil conversion at 600℃, the ratio of steam to carbon fed (S/C) of 3 and the oxygen to carbon ratio (O/C) of 0.34. The reaction conditions in ATR including temperature, O/C, S/C and weight hourly space velocity can be used to control both hydrogen yield and products distribution. The comparison between the ATR and common steam reforming of bio-oil was studied. The mechanism of the ATR of bio-oil was also discussed.
文摘Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.
基金Supported by the National Natural Science Foundation of China(Grant No.21476270,21306176,21776259,21276006)Scientific Research Launching Foundation of Zhejiang University of Technology(Grant No.G2817101103)
文摘Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distribution. The autoxidation of cyclopentane, cyclohexane, cycloheptane and cyclooctane occurs at 120 ℃, 130 ℃, 120 ℃, and 105 ℃ respectively, with obvious oxidized products formation. At 140 ℃, 145 ℃, 130 ℃ and 125 ℃, acceptable yields of the oxidized products could be obtained for them, and the oxidized product distributions were investigated in detail. The autoxidation of cycloalkanes follows the pseudo-first-order kinetic model and the apparent activation energies (Ea) for the autoxidation of cyclopentane and cyclohexane are 159.76 kJ. tool-1 and 86.75 kJ. mol-1 respectively. This study can act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes in the attempt to enhance the oxidized product selectivity.
基金National Natural Science Foundation of China(No.20176053)
文摘Contrast degradation experiments between ethanol and polyvinyl alcohol (PVA) were conducted during H2O2, UV/H2O2, Fenton, and Photo-Fenton processes in this study. UV/VIS spectra showed' that complexes between Fe(Ⅲ) and organics were easily formed and degraded within reaction time. Compared with ,the degradation of complex, hydroxyl radicals acted weakly in Fenton or Photo-Fenton process. Hydroxyl radi'cals involved in Photo-Fenton process were deemed to be generated from the split decomposition of H2O2, photolysis of Fe_aq^3+, and degradation of hydrated Fe(Ⅳ)-complex but not traditional Fenton reaction. Experimental evidence to support this point was presented in this paper.
基金Project(21376271)supported by the National Natural Science Foundation of ChinaProject(2013)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China+2 种基金Projects(CL12129,201310533008)supported by the Undergraduates Innovative Training Foundation of Central South University,ChinaProject(Z12060)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,ChinaProject(CSUZC2013008)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.
文摘The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is demonstrated that trace amounts of Sb flux are capable of tuning the geometry of NWs, i.e., enhancing lateral growth and suppressing axial growth. We attribute this behavior to the surfactant effect of Sb which results in modifications to the kinetic and thermodynamic processes. A thermodynamic mechanism that accounts for Sb segregation in InAsSb NWs is also elucidated. This study opens a new route towards precisely controlled NW geometries by means of Sb addition.
基金supported by the National Natural Science Foundation of China(21871141,21871142,21901122,22071109 and 92061101)the Natural Science Research of Jiangsu Higher Education Institutions of China(19KJB150011)+3 种基金China Postdoctoral Science Foundation(2018M630572 and 2019M651873)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201171)Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.
文摘The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of anthraquinone-based COFs(i.e.,AAn-COF and OH-AAn-COF)with tunable 1D superstructures(e.g.,nanofibers(NF)and hollow tubes(HT))have been produced via Schiff-base condensation reaction.Interestingly,a rarely reported nanosheet-based self-template mechanism and a nanosheet-crimping mechanism have been demonstrated for the production of COF-based nanofibers and hollow tubes,respectively.Besides,the obtained COF-based superstructures can be post-modified with transition metals for efficient CO_(2)RR.Specifically,AAn-COF-Cu(NF)and OH-AAn-COF-Cu(HT)exhibit superior faradaic-efficiency with CH_(4)(FECH_(4))of 77%(-128.1 mA cm^(-2),-0.9 V)and 61%(-99.5 mA cm^(-2),-1.0 V)in a flow-cell,respectively.Noteworthy,the achieved FECH_(4) of AAn-COF-Cu(NF)(77%)is the highest one among reported crystalline COFs.This work provides a general methodology in exploring morphology-controlled COFs for electrocatalytic CO_(2)RR.
基金supported by the National Basic Research Program of China(2012CB725204)National Natural Science Foundation of China(51073081,31170030 and J1103503)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT13023)the Natural Science Foundation of Tianjin,China(13JCYBJC24900 and 13JCZDJC-27800)
文摘A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide(NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium alginate were alternately loaded onto the surface of electrospun polycaprolactone matrix via electrostatic layer-by-layer self-assembly. This material revealed significant NO generation when contacting NO donor S-nitrosoglutathione(GSNO). Adhesion and spreading of smooth muscle cells were inhibited on this material in the presence of GSNO, while proliferation of endothelial cells was promoted. In vitro platelet adhesion and arteriovenous shunt experiments demonstrated good antithrombotic properties of this material, with inhibited platelet activation and aggregation, and prevention of acute thrombosis. This study may provide a new method of improving cellular function and antithrombotic property of vascular grafts.
基金supported by the National Natural Science Foundation of China(Grant Nos.21307101 and 21301015)the Science & Technology Department of Sichuan Province(Pillar Program)(Grant No.2013FZ0060)+1 种基金Education Department of Sichuan Province(Grant No.15ZA0392)the Project of Postgraduate Degree Construction,Southwest University for Nationalities(Grant No.2015XWD-S0703)
文摘Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modification could be used as Fenton-like catalysts. Surface doping of Ti O2 could concentrate the pollutants surrounding the Fe3O4 catalyst, which might benefit the catalytic performance of Fe3O4. Herein, we reported that Ti O2-doped Fe3O4 nanoparticles(NPs) could be used as high-performance Fenton-like catalyst for dye decoloration in near neutral environment, where the doping of Ti O2 on Fe3O4 surface dramatically improved the catalytic activity of Fe3O4 in Fenton-like reaction. Ti O2-doped Fe3O4 NPs catalyzed the decomposition of H2O2 to oxidize methylene blue without external energy supply, resulting in effective decoloration. Ti O2-doped Fe3O4 NPs showed high catalytic activity under various p H values and even in the presence of radical scavenger. More catalysts and H2O2 would facilitate the decoloration. At higher temperature, the decoloration became faster and more effective. The implication to the environmental applications of Ti O2-doped Fe3O4 NPs is discussed.
基金financial support from the National Natural Science Foundation of China (21003092)the Key Project of Chinese Ministry of Education (211064)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A simple and efficient system for Suzuki cross-coupling reactions was developed using a ligandless catalyst of Pd nanoclusters generated in situ from Pd(acac)2. The cross-coupling reactions proceeded under mild reaction conditions with a high reaction rate(5 min) to give various biaryls in high yields. The system also exhibited catalytic potential for Heck reaction between aryl bromides and styrene.