Designing highly selective and efficient singleatom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance tr...Designing highly selective and efficient singleatom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance trends of transition metal complexes with P-based ligands in nitrogen reduction reaction(NRR) and further develops a design principle for high-performance single-atom catalysts(SACs)of NRR. Among the explored catalysts, W@BP(0.40 eV),Ta@BP(0.47 eV), and Nb@BP(0.53 eV) are identified as remarkable candidates with low free energy change in the potential-limiting step, high stability and high electrical conductivity for NRR. It is worth noting that almost all SACs with P-based ligands exhibit high NRR selectivity, due to the fact that they adsorb *N_(2) more strongly than *H. The adsorption free energy of *N_(2) H can be considered as a descriptor for the intrinsic activity trends in NRR. Furthermore, by constructing a volcano plot of the activity against the electronic charge on metal centers, it is demonstrated that the metal center with a moderate amount of positive charge can promote the catalytic performance of NRR.展开更多
基金supported by the National Natural Science Foundation of China (21525626 and 21761132023)the Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘Designing highly selective and efficient singleatom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance trends of transition metal complexes with P-based ligands in nitrogen reduction reaction(NRR) and further develops a design principle for high-performance single-atom catalysts(SACs)of NRR. Among the explored catalysts, W@BP(0.40 eV),Ta@BP(0.47 eV), and Nb@BP(0.53 eV) are identified as remarkable candidates with low free energy change in the potential-limiting step, high stability and high electrical conductivity for NRR. It is worth noting that almost all SACs with P-based ligands exhibit high NRR selectivity, due to the fact that they adsorb *N_(2) more strongly than *H. The adsorption free energy of *N_(2) H can be considered as a descriptor for the intrinsic activity trends in NRR. Furthermore, by constructing a volcano plot of the activity against the electronic charge on metal centers, it is demonstrated that the metal center with a moderate amount of positive charge can promote the catalytic performance of NRR.