期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
智能决策系统与排液采气技术一体化研究 被引量:6
1
作者 黄万书 刘通 +3 位作者 袁剑 姚麟昱 倪杰 杜洋 《天然气与石油》 2020年第5期43-48,共6页
为解决气井积液预警不及时、排采介入滞后、劳动强度大、制度优化难等问题,通过分析收集21井次的井底测压数据,建立了中江气田气井积液程度3级分类标准,形成了多指标的井筒积液数字综合识别方法,对158口井进行诊断,正确率达92.4%。结合... 为解决气井积液预警不及时、排采介入滞后、劳动强度大、制度优化难等问题,通过分析收集21井次的井底测压数据,建立了中江气田气井积液程度3级分类标准,形成了多指标的井筒积液数字综合识别方法,对158口井进行诊断,正确率达92.4%。结合各排采工艺应用界限和经济分析,创建了智能决策系统,并借助计算机编程、工业自动化控制、物联网互联等将智能决策系统与智能排液采气技术一体化,在JS 203-7 HF、JS 104-3 HF井成功应用,实现了井口压力数据自动收集、气井积液程度自动识别、排液采气措施自动判断、排液采气参数自动调整。JS 203-7 HF井及时介入智能泡排后产能递减率由76.00 m 3/d降低到6.37 m 3/d,JS 104-3 HF井及时介入智能柱塞后实现稳定排液且日增产天然气3000 m 3/d。智能决策系统和智能排液采气装置,能有效降低气井产量递减速度,提高最终气藏采收率,对致密砂岩气藏、页岩气藏的智能化排采技术具有借鉴意义。 展开更多
关键词 积液程度自动识别 智能决策 智能排液 自判断 自调整
下载PDF
小波神经网络在电力系统月度负荷预测中的应用 被引量:4
2
作者 吴耀华 刘学琴 《中国农村水利水电》 北大核心 2009年第4期131-133,共3页
在研究了电力月负荷特性的基础上提出了一种新型的月度负荷预测模型———小波神经网络负荷预测模型。该模型以非线性小波基为神经元函数,通过伸缩因子和平移因子计算小波基函数合成的小波网络,以横向和纵向历史负荷数据作为输入神经元... 在研究了电力月负荷特性的基础上提出了一种新型的月度负荷预测模型———小波神经网络负荷预测模型。该模型以非线性小波基为神经元函数,通过伸缩因子和平移因子计算小波基函数合成的小波网络,以横向和纵向历史负荷数据作为输入神经元,采用基于BP(back propagation)算法的网络自调整算法,同时还采取自判断调整步长的方法,使得跨过局部极小点的同时还加快了收敛速度。该网络不但能达到全局最优的逼近效果,还能有效地克服了人工神经元网络学习速度慢、难以合理确定网络结构、存在局部极小点的固有缺陷。应用该模型预测我国某地区月负荷,结果表明,该模型预报精度高,自适应性好,收敛速度也明显快于单纯的神经网络。 展开更多
关键词 电力系统 小波神经网络 月度负荷预测 自判断调整步长
下载PDF
汽车风阻系数灵敏度分析方法研究 被引量:1
3
作者 郑鑫 苏东海 《汽车工程》 EI CSCD 北大核心 2021年第9期1336-1342,1349,共8页
通过对风阻系数敏感度的理论推导,寻找影响风阻系数的车身造型面关键部位,根据获得的灵敏度,采用自动变形技术,实现网格对影响风阻系数的造型面变化的自学习和自判断,最终达到汽车风阻自动优化的目的。对某款SUV风阻的灵敏度分析,验证... 通过对风阻系数敏感度的理论推导,寻找影响风阻系数的车身造型面关键部位,根据获得的灵敏度,采用自动变形技术,实现网格对影响风阻系数的造型面变化的自学习和自判断,最终达到汽车风阻自动优化的目的。对某款SUV风阻的灵敏度分析,验证了灵敏度方法和自动变形技术在空气动力学风阻计算中应用的有效性,计算全过程无需人工介入,即可使风阻系数达到预设的目标值。 展开更多
关键词 风阻系数 灵敏度 自动变形 网格自学习 自判断
下载PDF
Successful Delivery of Infrastructural Projects: Epistemic Overview of Cost Risk and Uncertainties
4
作者 Joseph Ignatius Teye Buerte)t Emmanuel Abeere-Inga Theophilus Adjei Kumi 《Journal of Civil Engineering and Architecture》 2012年第9期1218-1229,共12页
The process of decision making and risk analysis are essential tasks along the construction project cycle. Over the years, construction practitioners and researchers have used various methods, tools and techniques to ... The process of decision making and risk analysis are essential tasks along the construction project cycle. Over the years, construction practitioners and researchers have used various methods, tools and techniques to evaluate risk and assist in making more concise decisions. Most practitioners, however, rely on their expert judgment, past experience, intuition, acquired and accumulated knowledge and gut feelings to make decisions. Aleatory (natural, heterogeneity and stochasticity) and epistemic (subjective, ignorance) are the two major types of uncertainties observed in natural sciences. Practitioners traditionally deal with aleatory uncertainty through probabilistic analysis based on historical data (frequentist approach); and epistemic uncertainty, on the other hand, handled through the Bayesian approach which has limitations since it requires a priori assumption. This paper reports the application of the DST (Dempster Shafer Theory) of evidence to determine the most critical risk factors affecting project cost contingencies using their epistemic probabilities of occurrence. The paper further discuses how these factors can be managed to enhance successful delivery of infrastructural projects. It uses the mixed methodology, with data gathered through structured questionnaires distributed to construction clients, contractors, professionals and experts in the built environment. The research revealed that design risk, financial risk and economic risk were most important cost risk categorizations. In particular, scope changes, incomplete scope definition, incomplete design, changes in specification, micro and macroeconomic indicators and delayed payment problems were identified as the most important risk factors to be considered during the cost contingency estimation process, hence successful delivery of infrastructural projects. The paper concludes by recommending modalities for managing the contingency evolution process of risk estimation to enhance successful delivery and management of infrastructural projects. 展开更多
关键词 Epistemic uncertainty aleatory uncertainty RISK cost management dempster shaffer theory.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部