Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable develo...Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable development. China has the highest rate of urban expansion and has emerged as an urban expansion hotspot worldwide. In this paper, the progress of studies on Chinese urban expansion based on remote sensing technology are summarized and analyzed from the aspects of urban area definition, remotely sensed imagery applied in urban expansion, monitoring methods of urban expansion, and urban expansion applications. Existing issues and future directions of Chinese urban expansion are discussed and proposed. Results indicate that: 1) The fusion of multi-source remotely sensed imagery is imperative to meet the needs of urban expansion with various monitoring terms and frequencies on different scales and dimensions. 2) To guarantee the classification accuracy and efficiency and describe urban expansion and its influences on local land use simultaneously, the combination of visual interpretation and automatic classification is the tendency of future monitoring methods of urban areas. 3) Urban expansion data have become the prerequisite for recognizing the urban development process, excavating its driving forces, simulating and predicting the future development directions, and also is conducive to revealing and explaining urban ecological and environmental issues. 4) In the past decades, Chinese scholars have promoted the application of remote sensing technology in the urban expansion field, with data construction, methods and models developing from the quotation stage to improvement and innovation stage; however, an independent and consistent urban expansion data on the national scale with long-term and high-frequency(such as annual monitoring) monitoring is still lacking.展开更多
In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe s...In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obta/ned and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N 〉 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.展开更多
Using a measure for the divisibility of a dynamical map, we study the non-Markovian character of a quantum evolution of a spin-S system, which is in an external field and weakly coupled to a bosonic bath with a certai...Using a measure for the divisibility of a dynamical map, we study the non-Markovian character of a quantum evolution of a spin-S system, which is in an external field and weakly coupled to a bosonic bath with a certain temperature. The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation. Besides the influence of the environmental spectral density function, the external field and low temperatures can affect the quantum non-Markovianity. It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.展开更多
基金Under the auspices of National Major Science and Technology Program for Water Pollution Contro and Treatment(No.2017ZX07101001)International Partnership Program of Chinese Academy of Sciences(No.131C11KYSB20160061)
文摘Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable development. China has the highest rate of urban expansion and has emerged as an urban expansion hotspot worldwide. In this paper, the progress of studies on Chinese urban expansion based on remote sensing technology are summarized and analyzed from the aspects of urban area definition, remotely sensed imagery applied in urban expansion, monitoring methods of urban expansion, and urban expansion applications. Existing issues and future directions of Chinese urban expansion are discussed and proposed. Results indicate that: 1) The fusion of multi-source remotely sensed imagery is imperative to meet the needs of urban expansion with various monitoring terms and frequencies on different scales and dimensions. 2) To guarantee the classification accuracy and efficiency and describe urban expansion and its influences on local land use simultaneously, the combination of visual interpretation and automatic classification is the tendency of future monitoring methods of urban areas. 3) Urban expansion data have become the prerequisite for recognizing the urban development process, excavating its driving forces, simulating and predicting the future development directions, and also is conducive to revealing and explaining urban ecological and environmental issues. 4) In the past decades, Chinese scholars have promoted the application of remote sensing technology in the urban expansion field, with data construction, methods and models developing from the quotation stage to improvement and innovation stage; however, an independent and consistent urban expansion data on the national scale with long-term and high-frequency(such as annual monitoring) monitoring is still lacking.
基金Supported by NSFC for Young Scholars under Grant No.11101166Tianyuan Youth Foundation of Mathematics under Grant No.11126244+1 种基金Youth PhD Development Fund of CUFE 121 Talent Cultivation Project under Grant No.QBJZH201002Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.KM201110772017
文摘In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obta/ned and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N 〉 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11174114 and 11174363China Postdoctoral Science Foundation Funded Project No.2012M520494+1 种基金the Basic Research Funds in Renmin University of China from the Central Government Project No.13XNLF03the Natural Science in Nantong University under Grant No.03040813
文摘Using a measure for the divisibility of a dynamical map, we study the non-Markovian character of a quantum evolution of a spin-S system, which is in an external field and weakly coupled to a bosonic bath with a certain temperature. The finite-temperature dynamics of the open system is obtained by the time-convolutionless master equation in the secular approximation. Besides the influence of the environmental spectral density function, the external field and low temperatures can affect the quantum non-Markovianity. It is found out that the non-Markovian feature of a dynamical map of a high-dimensional spin system is noticeable in contrast to that of a low-dimension spin system.