期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
铁路客站二维图纸自动分析识别技术研究 被引量:2
1
作者 解亚龙 郭祥 +3 位作者 刘伟 卢文龙 李春红 俸凰 《铁路技术创新》 2022年第4期35-39,共5页
为解决铁路客站二维图纸翻模精度不高的问题,开展铁路客站二维图纸自动分析识别技术研究,提出一套基于“构件库-数据库-三维显示”耦合作用机理的自动分析识别技术。该识别技术将传统的流程化、逻辑化算法拆分为单点算法,并通过流程中... 为解决铁路客站二维图纸翻模精度不高的问题,开展铁路客站二维图纸自动分析识别技术研究,提出一套基于“构件库-数据库-三维显示”耦合作用机理的自动分析识别技术。该识别技术将传统的流程化、逻辑化算法拆分为单点算法,并通过流程中的触发机制快速调用算法,具有精度高、速度快、成本低等特点。基于张家口高铁客站工程,对铁路客站二维图纸自动分析识别技术的实用价值进行验证,研究结果表明,该技术应用效果良好,具有一定的工程实用价值。 展开更多
关键词 铁路客站 二维图纸 自动分析识别 触发机制 张家口站
下载PDF
X线颅面影像自动识别分析系统的研制 被引量:4
2
作者 李诗佩 吴求亮 张恒义 《中华口腔医学杂志》 CAS CSCD 北大核心 2002年第6期466-468,I004,共4页
目的 建立自动X线头影测量分析系统 ,简化测量步骤 ,为临床进行头影测量分析提供简便可靠的方法。方法 应用图形、图像处理技术和一定的人工智能 ,用VisualC语言编程 ,采用中值滤波 ,直方图均衡增强图像 ;用Laplacian和Canny进行边缘... 目的 建立自动X线头影测量分析系统 ,简化测量步骤 ,为临床进行头影测量分析提供简便可靠的方法。方法 应用图形、图像处理技术和一定的人工智能 ,用VisualC语言编程 ,采用中值滤波 ,直方图均衡增强图像 ;用Laplacian和Canny进行边缘检测 ;通过对各解剖结构建立模板 ,实现软硬组织轮廓线的自动描绘。结果 本系统能自动提取软组织轮廓线 ,并对软组织标志点进行自动识别和测量分析 ;对下颌骨各标志点、耳点和蝶鞍点都能自动识别 ,并能自动生成硬组织轮廓线。结论 X线颅面影像自动识别分析系统是头影测量更方便。 展开更多
关键词 X线颅面影像自动识别分析系统 计算机辅助设计 口腔正畸学 头影测量 口腔外科学
原文传递
应用自动识别与定量分析数据库筛查黄河和长江水中有机污染物 被引量:14
3
作者 李维美 李雪花 +5 位作者 蔡喜运 陈景文 乔显亮 Kiwao Kadokami Daisuke Jinya Toyomi Iwamura 《环境科学》 EI CAS CSCD 北大核心 2010年第11期2627-2632,共6页
采用气质联用分析,并应用自动识别与定量分析数据库(AIQS-DB)对黄河下游和长江下游水样中近1000种有机污染物进行了筛查.结果表明,黄河下游山东段和长江下游江苏段水样分别检出95种和121种化合物,主要包括正构烷烃、多环芳烃、酚类、硝... 采用气质联用分析,并应用自动识别与定量分析数据库(AIQS-DB)对黄河下游和长江下游水样中近1000种有机污染物进行了筛查.结果表明,黄河下游山东段和长江下游江苏段水样分别检出95种和121种化合物,主要包括正构烷烃、多环芳烃、酚类、硝基化合物、酞酸酯类、农药和药物等.其中,黄河和长江水样中正构烷烃平均浓度分别为1806ng/L和720ng/L;16种优控PAHs平均浓度分别为27ng/L和30ng/L;6种优控PAEs的平均浓度分别为77ng/L和2166ng/L;黄河和长江水样分别检出9种和17种农药.黄河各采样点间污染物浓度差别较大,而长江采样点间浓度相差较小.研究表明,气质联用结合AIQS-DB可有效用于区域性污染物的筛查. 展开更多
关键词 自动识别与定量分析系统 地表水 筛查 有机污染物
原文传递
Collision-Based Chosen-Message Simple Power Clustering Attack Algorithm 被引量:1
4
作者 陈艾东 许森 +1 位作者 陈运 秦志光 《China Communications》 SCIE CSCD 2013年第5期114-119,共6页
Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is dif... Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%. 展开更多
关键词 crypt analysis side channel attack collision attack chosen-message attack clustering algorithm
下载PDF
Automatic recognition and quantitative analysis of Ω phases in Al-Cu-Mg-Ag alloy
5
作者 刘冰滨 谷艳霞 +1 位作者 刘志义 田小林 《Journal of Central South University》 SCIE EI CAS 2014年第5期1696-1704,共9页
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi... The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved. 展开更多
关键词 auto pattern recognition top-hat transformation second phases in A1 alloy quantitative analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部