期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
自动加权多图正则化L_(p)光滑非负矩阵分解算法
1
作者
何雁雁
《现代计算机》
2023年第6期54-59,共6页
针对多图正则化非负矩阵分解忽略了因子矩阵的光滑性以及图正则项参数选取困难的问题,建立了自动加权多图正则化L_(p)光滑非负矩阵分解(AMGSNMF)模型。该模型根据数据之间的几何结构自动地选取图正则项权重,且通过增加因子矩阵的光滑约...
针对多图正则化非负矩阵分解忽略了因子矩阵的光滑性以及图正则项参数选取困难的问题,建立了自动加权多图正则化L_(p)光滑非负矩阵分解(AMGSNMF)模型。该模型根据数据之间的几何结构自动地选取图正则项权重,且通过增加因子矩阵的光滑约束提升解的准确性。使用乘性更新的方法得到所建模型的算法——自动加权多图正则化L_(p)光滑非负矩阵分解算法(AMGSNMF)。将AMGSNMF算法应用于数据聚类,在数据集COIL20和ORL上的实验表明,AMGSNMF算法比四类经典的非负矩阵分解算法聚类精确度提升了0.4%~11.44%,归一化互信息提升了0.53%~3.86%。
展开更多
关键词
非负矩阵分解
自动加权多图正则化
L_(p)光滑
交替更新
聚类
下载PDF
职称材料
题名
自动加权多图正则化L_(p)光滑非负矩阵分解算法
1
作者
何雁雁
机构
贵州师范大学数学科学学院
出处
《现代计算机》
2023年第6期54-59,共6页
文摘
针对多图正则化非负矩阵分解忽略了因子矩阵的光滑性以及图正则项参数选取困难的问题,建立了自动加权多图正则化L_(p)光滑非负矩阵分解(AMGSNMF)模型。该模型根据数据之间的几何结构自动地选取图正则项权重,且通过增加因子矩阵的光滑约束提升解的准确性。使用乘性更新的方法得到所建模型的算法——自动加权多图正则化L_(p)光滑非负矩阵分解算法(AMGSNMF)。将AMGSNMF算法应用于数据聚类,在数据集COIL20和ORL上的实验表明,AMGSNMF算法比四类经典的非负矩阵分解算法聚类精确度提升了0.4%~11.44%,归一化互信息提升了0.53%~3.86%。
关键词
非负矩阵分解
自动加权多图正则化
L_(p)光滑
交替更新
聚类
Keywords
non-negative matrix factorization(NMF)
auto-weighted multiple graph regularized
L_(p)smooth
alternating updating
clustering
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
自动加权多图正则化L_(p)光滑非负矩阵分解算法
何雁雁
《现代计算机》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部