A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infr...A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.展开更多
Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance w...Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.展开更多
文摘A novel radar-based system for longwall coal mine machine localisation is described. The system, based on a radar-ranging sensor and designed to localise mining equipment with respect to the mine tunnel gate road infrastructure, is developed and trialled in an underground coal mine. The challenges of reliable sensing in the mine environment are considered, and the use of a radar sensor for localisation is justified. The difficulties of achieving reliable positioning using only the radar sensor are examined. Several probabilistic data processing techniques are explored in order to estimate two key localisation parameters from a single radar signal, namely along-track position and across-track position, with respect to the gate road structures. For the case of across-track position, a conventional Kalman filter approach is sufficient to achieve a reliable estimate. However for along-track position estimation, specific infrastructure elements on the gate road rib-wall must be identified by a tracking algorithm. Due to complexities associated with this data processing problem, a novel visual analytics approach was explored in a 3D interactive display to facilitate identification of significant features for use in a classifier algorithm. Based on the classifier output, identified elements are used as location waypoints to provide a robust and accurate mining equipment localisation estimate.
基金the Science and Technology Foundation of Shaanxi Province in China(2003K06G19)
文摘Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.