The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)te...The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)test were used for evaluating the mechanical properties of this alloy.The tests were conducted at 21℃ on the bulk samples that were mechanically alloyed for 6 h at two ball-to-powder mass ratios(BPR)of 30:1 and 90:1.Furthermore,the tests were conducted at 200 and 400℃ on the samples that were processed at BPR of 90:1.Increasing BPR resulted in raising the final indentation load from(316±26)to(631±9)N and reducing the final indentation depth from 111 to 103μm.Regarding the samples that were processed at BPR of 90:1,increasing the test temperature from 21 to 400℃ resulted in decreasing the final load from(631±9)to(125±1)N and increasing the final depth from 103 to(116±1)μm.The sample processed at BPR of 90:1 and tested at 21℃ revealed the highest strength and the least deformability while the sample processed at BPR of 90:1 and tested at 400℃ exhibited the lowest strength and the greatest deformability,as compared to all samples under study.展开更多
文摘The influence of processing variables on the mechanical properties of a nanostructured Al-10 wt.%Cu alloy was investigated.Stress-strain microprobe®system(SSM)and its automated ball indentation®(ABI®)test were used for evaluating the mechanical properties of this alloy.The tests were conducted at 21℃ on the bulk samples that were mechanically alloyed for 6 h at two ball-to-powder mass ratios(BPR)of 30:1 and 90:1.Furthermore,the tests were conducted at 200 and 400℃ on the samples that were processed at BPR of 90:1.Increasing BPR resulted in raising the final indentation load from(316±26)to(631±9)N and reducing the final indentation depth from 111 to 103μm.Regarding the samples that were processed at BPR of 90:1,increasing the test temperature from 21 to 400℃ resulted in decreasing the final load from(631±9)to(125±1)N and increasing the final depth from 103 to(116±1)μm.The sample processed at BPR of 90:1 and tested at 21℃ revealed the highest strength and the least deformability while the sample processed at BPR of 90:1 and tested at 400℃ exhibited the lowest strength and the greatest deformability,as compared to all samples under study.