We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration o...This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ...This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.展开更多
In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and...In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and compensated for by the adaptive method without extra sensors on dredging equipment,and the control mechanism is simplified.Adaptive control is used to compensate for the reaction and environmental disturbances on the dredger,so the dredger can maintain the desired position with a minimum error and shock.The proposed adaptive robust controller guarantees the global asymptotic stability of the closed-loop system and rapid position tracking of the dredger.The simulation results show that the proposed controller has superior performance in position tracking and robustness to large disturbances.展开更多
A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is ...A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is reduced to simplify the design without degrading much of the performance. Model following adaptive control laws in discrete form are derived. These laws satisfy the hyperstability condition for taking care of the load and machine parameter changes of the drive. A microprocessor 8098 is used to develop the speed controller. The implementation of the control system uses only available variables of the reference model and the controlled plant. Experimental results are given to demonstrate the good performance of the system.展开更多
To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can...An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.展开更多
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach...An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.展开更多
The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was prop...The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experimentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.展开更多
For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Ai...For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.展开更多
The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model wi...The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.展开更多
A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous dist...A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.展开更多
A new kind of commercial truck is presented, which has rear air suspension using leaf spring as guiding rod instead of original leaf spring. ADAMS/Car is used as a tool to build the whole truck model. The designed tr...A new kind of commercial truck is presented, which has rear air suspension using leaf spring as guiding rod instead of original leaf spring. ADAMS/Car is used as a tool to build the whole truck model. The designed truck's constant-radius cornering analysis and its ride performance simulation analysis under B class random road condition are carried out according to national experimental method standards. Compared the simulation results with the field test results indicate that performance index of the designed air suspension truck' s constant-radius cornering and its ride performance meets the design requirements and reaches its prospective target. And resuhs from simulation are similar to those from tests in value and trend, which indicates the virtual prototype is correct. The model can be used further to opti,nize suspension parameters and do some design work on the control system of air suspension.展开更多
In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plasti...In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.展开更多
This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is si...This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an ...This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.展开更多
A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a h...A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a half-rate four-tap decision feedback equalizer (DFE). The equalizer used the Signsign least mean-squared (SS-LMS) algorithm to realize the coefficient adaptation. An automatic gain control (AGC) amplifier with the sign least mean-squared (S-LMS) algorithm has been used to compensate the transmission media loss. To recover the clock signal from the input data serial and provide for the DFE and AGC, a bang-bang clock recovery (BB-CR) is adopted. A third order phase loop loek (PLL) model was proposed to predict characteristics of the BB-CR. The core has been verified by behavioral modeling in MATLAB. The results indicate that the core can meet the specifications of the backplane receiver. The DFE recovered data over a 34" FR-4 backplane has a peak-to-peak jitter of 17 ps, a horizontal eye opening of 0.87 UI, and a vertical eye opening of 500 mVpp.展开更多
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘This paper presents the principle and critical factors of adaptive cancellation of structural vibration in time domain(ACSV-TD).Digital-analog simulations and model tests are conducted on cancelling forced vibration of a cantilever beam.Filtered-X RLS algorithm is used to get faster convergence speed and stronger adaptability (in comparison with LMS algorithm). The results demonstrate the efficiency and adaptability of the ACSV-TD.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
文摘This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum.
基金The National Basic Research Program of China (973 Program) (No. 2005CB221505)Open Fund of Provincial Open Laboratory for Control Engineering Key Disciplines (No. KG2009-02)
文摘In order to deal with the dynamic positioning system control problems of dredgers working under strong dredging reaction or harsh environments,an adaptive backstepping method is proposed.Disturbances are estimated and compensated for by the adaptive method without extra sensors on dredging equipment,and the control mechanism is simplified.Adaptive control is used to compensate for the reaction and environmental disturbances on the dredger,so the dredger can maintain the desired position with a minimum error and shock.The proposed adaptive robust controller guarantees the global asymptotic stability of the closed-loop system and rapid position tracking of the dredger.The simulation results show that the proposed controller has superior performance in position tracking and robustness to large disturbances.
文摘A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is reduced to simplify the design without degrading much of the performance. Model following adaptive control laws in discrete form are derived. These laws satisfy the hyperstability condition for taking care of the load and machine parameter changes of the drive. A microprocessor 8098 is used to develop the speed controller. The implementation of the control system uses only available variables of the reference model and the controlled plant. Experimental results are given to demonstrate the good performance of the system.
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
文摘An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.
基金Supported by National Natural Science Foundation of China(No.59975001 and 50205019).
文摘An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.
文摘The principle of a new type of no-pulsation continuous rotary electro-hydraulic servomotor applied to simulators is introduced. LuGre friction model was analyzed. The identification method of LuGre parameters was proposed, and the measures to compensate the effect of friction forces were given. A friction torque model for the new rotary motor was proposed. The low-speed response and step response of the motor were studied experimentally. Experimental results proved that using friction compensation could eliminate stick-slip motion at the low speed, which makes the servomotor applicable to simulators.
基金Project(51105017) supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00) supported by the National Science and Technology Support Program of ChinaProject(2010DFB80020) supported by the Technology Major Project of the Ministry of Science and Technology of China
文摘For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.
基金Project supported by the National Natural Science Foundation of China (No. 50477030) the Natural Science Foundation of Zheji-ang Province (No. Y105351), China
文摘The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model with compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network PI unit for LIM servo-drive is also discussed. The effectiveness of mathematical model for drive control is verified by simulations.
基金Supported by the National Natural Science Foundation of China (Grant No. 61074053)the Applied Basic Research Program of Ministry of Transport of China (Grant No. 2011-329-225-390)
文摘A robust adaptive control strategy was developed to force an underactuated surface vessel to follow a reference path,despite the presence of uncertain parameters and unstructured uncertainties including exogenous disturbances and measurement noise.The reference path can be a curve or a straight line.The proposed controller was designed by using Lyapunov’s direct method and sliding mode control and backstepping techniques.Because the sway axis of the vessel was not directly actuated,two sliding surfaces were introduced,the first one in terms of the surge motion tracking errors and the second one for the yaw motion tracking errors.The adaptive control law guaranteed the uniform ultimate boundedness of the tracking errors.Numerical simulation results were provided to validate the effectiveness of the proposed controller for path following of underactuated surface vessels.
基金Sponsored by the National Science Foundation of Shandong Province (Grant No. Y2005F07) and Innovation Foundation of Jilin University(Grant No.2004CX018).
文摘A new kind of commercial truck is presented, which has rear air suspension using leaf spring as guiding rod instead of original leaf spring. ADAMS/Car is used as a tool to build the whole truck model. The designed truck's constant-radius cornering analysis and its ride performance simulation analysis under B class random road condition are carried out according to national experimental method standards. Compared the simulation results with the field test results indicate that performance index of the designed air suspension truck' s constant-radius cornering and its ride performance meets the design requirements and reaches its prospective target. And resuhs from simulation are similar to those from tests in value and trend, which indicates the virtual prototype is correct. The model can be used further to opti,nize suspension parameters and do some design work on the control system of air suspension.
基金Sponsored by the Natural Science Foundation of Shanghai Education Committee(Grant No.05LZ13)Shanghai Leading Academic Discipline Project(Grant No. P1303)Shanghai Elitist Project(Grant No.04YQHB126)
文摘In order to realize automatic tracking drift of resonance frequency of ultrasonic vibration system with high power and high quality factor Q, adaptive fuzzy control was studied with a self-fabricated ultrasonic plastic welding machine. At first, relations between amplitude of vibration and frequency as well as main loop current and amplitude of vibration were analyzed. From this analysis, we deduced that frequency tracking process of the vibration system can be concluded as an optimizing problem of one dimensional fluctuant extremum of main loop current in vibration system. Then a method of self-optimizing fuzzy control, used for the realization of automatic frequency tracking in vibration system, is presented on the basis of serf-optimizing adaptive control approach and fuzzy control approach. The result of experiments shows that the fuzzy self-optimizing method can solve the problem of tracking frequency drift very well. Response time of tracking in the system is less than 50 ms, which basically meets the requirements of frequency tracking in ultrasonic plastic welding machine.
基金Foundation items:National Science and Technology Major Project(No.2011ZX05021-001)China Postdoctoral Science Foundation(No.2019M663865)。
文摘This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
基金Supported by Doctoral Bases Foundation of the Educational Committee of P. R. China under Grant No. 20030151005 and the Ministry of Communication of P. R. China under Grant No. 200332922505.
文摘This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA31g030).
文摘A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a half-rate four-tap decision feedback equalizer (DFE). The equalizer used the Signsign least mean-squared (SS-LMS) algorithm to realize the coefficient adaptation. An automatic gain control (AGC) amplifier with the sign least mean-squared (S-LMS) algorithm has been used to compensate the transmission media loss. To recover the clock signal from the input data serial and provide for the DFE and AGC, a bang-bang clock recovery (BB-CR) is adopted. A third order phase loop loek (PLL) model was proposed to predict characteristics of the BB-CR. The core has been verified by behavioral modeling in MATLAB. The results indicate that the core can meet the specifications of the backplane receiver. The DFE recovered data over a 34" FR-4 backplane has a peak-to-peak jitter of 17 ps, a horizontal eye opening of 0.87 UI, and a vertical eye opening of 500 mVpp.