RC算法引入区域级别的对比度,对颜色模型进行重新量化,能大幅提高处理速度、突出显著目标,然而其基于图的分割算法易出现分割区域不能较好地贴合物体边缘的问题。引入优化的SLIC算法代替基于图的分割算法,对RC算法进行改进,并实现一个...RC算法引入区域级别的对比度,对颜色模型进行重新量化,能大幅提高处理速度、突出显著目标,然而其基于图的分割算法易出现分割区域不能较好地贴合物体边缘的问题。引入优化的SLIC算法代替基于图的分割算法,对RC算法进行改进,并实现一个基于图像显著性识别的自动抠图系统,克服传统抠图系统必须人工标记的缺点。实验结果表明,相比IT、MZ、GB、RC等经典算法,改进的RC算法抠取的显著目标更精确,其查准率、查全率、 F 值分别为0.82、0.85和0.83,系统能自动抠取显著目标并提供图片合成应用。展开更多
文摘RC算法引入区域级别的对比度,对颜色模型进行重新量化,能大幅提高处理速度、突出显著目标,然而其基于图的分割算法易出现分割区域不能较好地贴合物体边缘的问题。引入优化的SLIC算法代替基于图的分割算法,对RC算法进行改进,并实现一个基于图像显著性识别的自动抠图系统,克服传统抠图系统必须人工标记的缺点。实验结果表明,相比IT、MZ、GB、RC等经典算法,改进的RC算法抠取的显著目标更精确,其查准率、查全率、 F 值分别为0.82、0.85和0.83,系统能自动抠取显著目标并提供图片合成应用。