Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance o...Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance of control system, an improved controller with a second order fuzzy controller and network-induced delay compensator being added to the basic fuzzy controller is proposed to realize self-regulation on-line. For this type of controller, neither plant model nor measurement of network delay is required. So it is capable of automatically adjusting quantified factor, pro- portional factor, and integral factor according to the control system error and its derivative. The design makes full use of the advantages of quickness in operation and reduction of steady state error because of its integral function. The con- troller has a good control effect on time-delay and can keep a better performance by self-regulation on-line in the net- work with data dropout and interference. It is good in quickness, adaptability, and robustness, which is favorable for controlling the long time-delay system.展开更多
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
文摘Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance of control system, an improved controller with a second order fuzzy controller and network-induced delay compensator being added to the basic fuzzy controller is proposed to realize self-regulation on-line. For this type of controller, neither plant model nor measurement of network delay is required. So it is capable of automatically adjusting quantified factor, pro- portional factor, and integral factor according to the control system error and its derivative. The design makes full use of the advantages of quickness in operation and reduction of steady state error because of its integral function. The con- troller has a good control effect on time-delay and can keep a better performance by self-regulation on-line in the net- work with data dropout and interference. It is good in quickness, adaptability, and robustness, which is favorable for controlling the long time-delay system.