期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
自动控制系统网络在热处理过程监控上的应用
1
作者 胡顺 《金属加工(热加工)》 2022年第1期69-71,共3页
热处理自动控制系统在当今石油机械的生产中应用已经非常广泛,但多数用于加热炉温度-时间曲线的实时记录上,热处理现场工艺及生产管控的模式依然陈旧,自动化程度低。在传统现场工艺及生产管控的基础上,将多终端监控、多点位记录、数据... 热处理自动控制系统在当今石油机械的生产中应用已经非常广泛,但多数用于加热炉温度-时间曲线的实时记录上,热处理现场工艺及生产管控的模式依然陈旧,自动化程度低。在传统现场工艺及生产管控的基础上,将多终端监控、多点位记录、数据自动记录及数据统计管理等功能系统化应用在同一网络内,有效地加强了过程监控的力度,保证生产过程质量的同时大幅提高了工作效率。 展开更多
关键词 热处理 自动控制系统网络 多终端监控 多点位记录 数据自动记录 过程监控
下载PDF
楼宇自动化控制网络系统的开发
2
作者 农毅 胡国胜 +1 位作者 王玉琴 杨青山 《广西科学院学报》 2002年第4期218-220,共3页
采用 L onworks技术作为控制网络主干 ,实现性能优良的控制网络应用软件平台 。
关键词 楼宇自动控制网络系统 LONWORKS控制网络 系统开发 智能建筑
下载PDF
计算机网络自动检测控制系统软件开发设计分析 被引量:3
3
作者 李浩峰 《计算机产品与流通》 2018年第8期21-21,共1页
计算机网络自动监测控制系统软件是计算机网络正常运行的保障因素。本文对该系统的总体方案、软件功能模块设计、数据库设计、组件之间的通信模块设计、服务器设计与客户端设计进行了探究。
关键词 计算机网络自动检测控制系统 系统总体方案 软件开发设计
下载PDF
车间自动控制网络系统 被引量:1
4
作者 王英春 《湖北汽车工业学院学报》 1998年第4期57-60,共4页
本文采用了个人计算机(PersonalComputer)与可编程序控制器(ProgrammableController);组成两级控制一一监控系统,从而组成车间自动控制网络的设计思想及实现方法。
关键词 可编程控制 实时监控 实时故障诊断 自动控制网络系统 个人计算机 车间 机械加工 生产管理
下载PDF
Adaptive Neural Network-Based Control for a Class of Nonlinear Pure-Feedback Systems With Time-Varying Full State Constraints 被引量:14
5
作者 Tingting Gao Yan-Jun Liu +3 位作者 Senior Member IEEE Lei Liu Dapeng Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期923-933,共11页
Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assum... Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closed- loop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach. Index TermsmAdaptive control, neural networks (NNs), non- linear pure-feedback systems, time-varying constraints. 展开更多
关键词 Adaptive control neural networks(NNs) nonlinear pure-feedback systems time-varying constraints
下载PDF
A new neural network model for the feedback stabilization of nonlinear systems
6
作者 Mei-qin LIU Sen-lin ZHANG Gang-feng YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1015-1023,共9页
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain... A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 展开更多
关键词 Standard neural network model (SNNM) Linear matrix inequality (LMI) Nonlinear control Asymptotic stability Chaotic cellular neural network Takagi and Sugeno (T-S) fuzzy model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部