This study focuses on automatic searching and verifying methods for the teachability, transition logics and hierarchical structure in all possible paths of biological processes using model checking. The automatic sear...This study focuses on automatic searching and verifying methods for the teachability, transition logics and hierarchical structure in all possible paths of biological processes using model checking. The automatic search and verification for alternative paths within complex and large networks in biological process can provide a considerable amount of solutions, which is difficult to handle manually. Model checking is an automatic method for verifying if a circuit or a condition, expressed as a concurrent transition system, satisfies a set of properties expressed in a temporal logic, such as computational tree logic (CTL). This article represents that model checking is feasible in biochemical network verification and it shows certain advantages over simulation for querying and searching of special behavioral properties in biochemical processes.展开更多
文摘This study focuses on automatic searching and verifying methods for the teachability, transition logics and hierarchical structure in all possible paths of biological processes using model checking. The automatic search and verification for alternative paths within complex and large networks in biological process can provide a considerable amount of solutions, which is difficult to handle manually. Model checking is an automatic method for verifying if a circuit or a condition, expressed as a concurrent transition system, satisfies a set of properties expressed in a temporal logic, such as computational tree logic (CTL). This article represents that model checking is feasible in biochemical network verification and it shows certain advantages over simulation for querying and searching of special behavioral properties in biochemical processes.