期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多特征描述的乳腺癌肿瘤病理自动分级 被引量:8
1
作者 龚磊 徐军 +2 位作者 王冠皓 吴建中 唐金海 《计算机应用》 CSCD 北大核心 2015年第12期3570-3575,3580,共7页
为了辅助病理医生快速高效诊断乳腺癌并提供乳腺癌预后信息,提出一种计算机辅助乳腺癌肿瘤病理自动分级方法。该方法使用深度卷积神经网络和滑动窗口自动检测病理图像中的细胞;随后综合运用基于稀疏非负矩阵分解的颜色分离、前景标记的... 为了辅助病理医生快速高效诊断乳腺癌并提供乳腺癌预后信息,提出一种计算机辅助乳腺癌肿瘤病理自动分级方法。该方法使用深度卷积神经网络和滑动窗口自动检测病理图像中的细胞;随后综合运用基于稀疏非负矩阵分解的颜色分离、前景标记的分水岭算法以及椭圆拟合得到每个细胞的轮廓。基于检测到的细胞和拟合出的细胞轮廓,提取出肿瘤的组织结构特征和上皮细胞的纹理形状特征等共203维的特征,运用这些特征训练支持向量机分类器(SVM),实现对病理组织图像自动分级。17位患者的49张H&E染色的乳腺癌病理组织图像自动分级的100次十折交叉检验评估结果表明:基于病理图像的细胞形状特征与组织的空间结构特征对病理图像的高、中、低分化等级分类整体准确率为90.20%;同时对高、中、低各分化等级的区分准确率分别为92.87%、82.88%、93.61%。相比使用单一结构特征或者纹理特征的方法,所提方法具有更高的准确率,能准确地对病理组织图像中肿瘤的高级和低级分化程度自动分级,且各分级之间的准确率差异较小。 展开更多
关键词 乳腺癌 组织病理图像 自动病理分级 计算机辅助预后分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部