For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Ai...For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.展开更多
Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budge...Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budgets and predicting their future evolution.Although many studies have been conducted on the effects of climate change on the ecosystem carbon cycle,little is known regarding carbon emissions from the alpine wetlands in arid northwest China.In this study,we used an automatic chamber system(LI-8100A)to measure ecosystem respiration(ER)in the Bayinbuluk alpine wetland in northwest China.The ER showed a significant bimodal diurnal variation,with peak values appearing at 16:30 and 23:30(Beijing time,UTC+8).A clear seasonal pattern in ER was observed,with the highest value(19.38μmol m-2 s-l)occurring in August and the lowest value(0.11μmol m-2 s-1)occurring in late December.The annual ER in 2018 was 678 g C m-2 and respiration during the non-growing season accounted for 13%of the annual sum.Nonlinear regression revealed that soil temperature at 5 cm depth and soil water content(SwC)were the main factors controlling the seasonal variation in ER.The diurnal variation in ER was mainly controlled by air temperature and solar radiation.Higher temperature sensitivity(Qio)occurred under conditions of lower soil temperatures and medium SWC(25%≤SWC≤40%).The present study deepens our understanding of CO,emissions in alpine wetland ecosystems and helps evaluate the carbon budget in alpine wetlands in arid regions.展开更多
基金Project(51105017) supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00) supported by the National Science and Technology Support Program of ChinaProject(2010DFB80020) supported by the Technology Major Project of the Ministry of Science and Technology of China
文摘For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB40010300)the National Natural Science Foundation of China(41907288,41673119 and 41773140)+1 种基金the Science and Technology Foundation of Guizhou Province([2019]1317 and[2020]1Y193)the Opening Fund of the State KeyLaboratoryof Environmental Geochemistry(SKLEG2021214).
文摘Wetlands store large amounts of carbon stocks and are essential in both global carbon cycling and regional ecosystem services.Understanding the dynamics of wetland carbon exchange is crucial for assessing carbon budgets and predicting their future evolution.Although many studies have been conducted on the effects of climate change on the ecosystem carbon cycle,little is known regarding carbon emissions from the alpine wetlands in arid northwest China.In this study,we used an automatic chamber system(LI-8100A)to measure ecosystem respiration(ER)in the Bayinbuluk alpine wetland in northwest China.The ER showed a significant bimodal diurnal variation,with peak values appearing at 16:30 and 23:30(Beijing time,UTC+8).A clear seasonal pattern in ER was observed,with the highest value(19.38μmol m-2 s-l)occurring in August and the lowest value(0.11μmol m-2 s-1)occurring in late December.The annual ER in 2018 was 678 g C m-2 and respiration during the non-growing season accounted for 13%of the annual sum.Nonlinear regression revealed that soil temperature at 5 cm depth and soil water content(SwC)were the main factors controlling the seasonal variation in ER.The diurnal variation in ER was mainly controlled by air temperature and solar radiation.Higher temperature sensitivity(Qio)occurred under conditions of lower soil temperatures and medium SWC(25%≤SWC≤40%).The present study deepens our understanding of CO,emissions in alpine wetland ecosystems and helps evaluate the carbon budget in alpine wetlands in arid regions.