An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension o...An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension or shortening of the three pneumatic cylinders. The response of pneumatic cylinder is relatively slow for motor actuator and can get a good single-axis trajectory control by traditional P controller, but the trajectory tracking of platform has a delay phenomenon for angle instantly larger change. To improve this situation in this study, Fuzzy system is used in the trajectory pre-compensation. By the angle changes and the angle rates of change in Fuzzy systems, the value of a pre-compensation output and each axis value are calculated using the Jacobian matrix after compensation in each axis. Through experiments, this Fuzzy pre-compensation method is proved to be able to improve the delay situation of angle trajectory tracking.展开更多
文摘An angle trajectory tracking of a 3-DOF (Degree Of Freedom) pneumatic motion platform by the NI Compact RIO control system was investigated. In this study, the positions of moving platform are changed by extension or shortening of the three pneumatic cylinders. The response of pneumatic cylinder is relatively slow for motor actuator and can get a good single-axis trajectory control by traditional P controller, but the trajectory tracking of platform has a delay phenomenon for angle instantly larger change. To improve this situation in this study, Fuzzy system is used in the trajectory pre-compensation. By the angle changes and the angle rates of change in Fuzzy systems, the value of a pre-compensation output and each axis value are calculated using the Jacobian matrix after compensation in each axis. Through experiments, this Fuzzy pre-compensation method is proved to be able to improve the delay situation of angle trajectory tracking.