The batch cooling crystallization initiated from spontaneous nucleation for aqueous solution of potassium nitrate was studied. The concentration and transmittance data were acquired on line throughout the operation.Ba...The batch cooling crystallization initiated from spontaneous nucleation for aqueous solution of potassium nitrate was studied. The concentration and transmittance data were acquired on line throughout the operation.Based on solute mass transfer in both liquid and solid phases, a kinetic model was deduced by assuming that the late period of primary nucleation resembles the initial period of the secondary nucleation. Nucleation and crystal growth stages were identified. Kinetic parameters were estimated piecewise from online experimental data and compared with those in literature. The estimated kinetic parameters for stages without apparent primary nucleation agreed well with those in literature. Further, a simulated concentration curve was also drawn from the estimated kinetic parameters and it matched well with that in experiment.展开更多
The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into...The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units.展开更多
文摘The batch cooling crystallization initiated from spontaneous nucleation for aqueous solution of potassium nitrate was studied. The concentration and transmittance data were acquired on line throughout the operation.Based on solute mass transfer in both liquid and solid phases, a kinetic model was deduced by assuming that the late period of primary nucleation resembles the initial period of the secondary nucleation. Nucleation and crystal growth stages were identified. Kinetic parameters were estimated piecewise from online experimental data and compared with those in literature. The estimated kinetic parameters for stages without apparent primary nucleation agreed well with those in literature. Further, a simulated concentration curve was also drawn from the estimated kinetic parameters and it matched well with that in experiment.
基金the project No.2010-218-02-174 by the Governmental Order of the Russian Federation of April 9,2010 No.218'On measures of federal support of cooperation between higher educational institutions and enterprises which realize complex projects of hi-tech production development
文摘The automated energy generating complex allows obtaining heat energy from waste coal-water slurry fuel (WCF) that is a mixture of fine coal particles from coal enrichment wastes with water. The mixture is blown into the swirl chamber under the pressure through the special sprayers. The received heat energy is used in different ways. One of the important issues is to estimate the heat losses through the walls of this chamber. In this paper we solved the boundary problem of mathematical physics to estimate the temperature fields in the walls of the swirl chamber. The obtained solution allows us to estimate the heat losses through the waUs of the swid chamber. The task of the mathematical physics has been solved by a numerical finite-difference method. The method for solving this prob- lem can be used in the calculation of temperature fields and evaluation of heat losses in other thermal power units.