Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts...Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.展开更多
Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization...Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.展开更多
Based on mobile devices as a solution for measurement faces interesting challenges, which involve poor human- computer interaction and limited computer capability. In this paper, we present the mobile sensing system ...Based on mobile devices as a solution for measurement faces interesting challenges, which involve poor human- computer interaction and limited computer capability. In this paper, we present the mobile sensing system (MSS) with func- tions of constructing, configuring and implementing measurement applications. MSS consists of a mobile device and a sensor probe, In the mobile device we install a pocket virtual instrument platform (PVIP), which has object-oriented software ar- chitecture and can be configured through extensible markup language (XML) files. And these configuration files can be written to the probe. Therefore, the probe can produce the measurement of APP in the mobile device. This infrastructure has been illustrated by a sound signal acquisition task and a flexible force measurement task which are finished with an android smartphone and a probe. These examples suggest that MSS is reconfigurable, highly automatical and flexible.展开更多
Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit freque...Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.展开更多
Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the ...Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.展开更多
The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude wa...The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude was measured with an accelerometer. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. But the measured digital meter data are occurred difference or errors by chattering noise. The reed switch contains chattering error by itself at the force equivalent position. The vibrations such as passing vehicle near to the reed switch installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using digital filter algorithm and also statistical calibration methods. However software approaches were implemented for reducing chattering error, there has still generated chattering error due to external mechanical vibrations and magnetic field. The chattering errors can be reduced by changing leaf spring structure using mechanical hysteresis characteristics.展开更多
This paper describes target detection improvement in a distance measurement system using two rotatable cameras for floating production, storage and offloading (FPSO) facilities. The authors have developed a distance...This paper describes target detection improvement in a distance measurement system using two rotatable cameras for floating production, storage and offloading (FPSO) facilities. The authors have developed a distance measurement system that consists of two rotatable cameras on a ship and a target on a wharf for the automatic berthing of ships. This system measures a distance by detecting and tracking the target on the wharf using the two rotatable cameras on the ship. Our goal is to apply this distance measurement system to an automatic relative positioning system for a ship at an FPSO facility. In this application, the shape of the target in the images captured by the cameras is deformed by their relative positions and attitudes, which increases the measurement errors. To solve this problem, we propose a target detection method that improves the target deformations. The proposed target detection method is able to detect the deformed targets using a target database that is created by image conversion with the perspective projection of a reference target. By using the proposed target detection method, the distance measurement error is decreased. Experimental results on a miniature scale and in an indoor environment confirmed that the measurement error of the relative distance is decreased by using the proposed target detection method.展开更多
Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by ...Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by their minutiae using Artificial Neural Networks (ANN), which reveals to be highly effective. The ANN method implemented is a based on Multi-Layer Perceptron (MLP) model, which utilizes the algorithm of retro-propagation of gradient during the learning process. In such a process, the mean square error generated represents the specific parameter for the identification phase by comparing a fingerprint taken from a crime scene with those of a reference database.展开更多
In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible t...In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible traps and defects induced by ions implantation in the gate-oxide and their further impacting on the sensitivity and dose range of RADFETs were analyzed qualitatively. Our devices had the dry/wet/dry sandwich gate-oxide of 420 nm thick. Different ion-implanting doses and post-annealing temperatures were carried out during the RADFETs fabrication. We built a real time auto-measurement system to realize the auto-state-switch between irradiation and read-out modes, and in-situ measurement of output voltage for ten devices in turn at once of radiation experiment. The threshold voltage, dose range and sensitivity of RADFETs were extracted and analyzed in detail. The results showed that the highest sensitivity of 229 mV/Gy achieved when the implant dose was2.2×1011 cm.2 and the post-annealing temperature was 1000°C, and the dose range of 34 Gy as well.展开更多
Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. I...Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. In order to solve the problems associated with these risks, receiver autonomous integrity monitoring(RAIM) and ground-based signal quality monitoring stations are widely used. Although these technologies can protect the user from the risks, they are expensive and have limited region coverage. Autonomous monitoring of satellite signal quality is an effective method to eliminate these shortcomings of the RAIM and ground-based signal quality monitoring stations; thus, a new navigation signal quality monitoring receiver which can be equipped on the satellite platform of GNSS is proposed in this paper. Because this satellite-equipped receiver is tightly coupled with navigation payload, the system architecture and its preliminary design procedure are first introduced. In theory, code-tracking loop is able to provide accurate time delay estimation of received signals. However, because of the nonlinear characteristics of the navigation payload, the traditional code-tracking loop introduces errors. To eliminate these errors, the dummy massive parallel correlators(DMPC) technique is proposed. This technique can reconstruct the cross correlation function of a navigation signal with a high code phase resolution. Combining the DMPC and direct radio frequency(RF) sampling technology, the satellite-equipped receiver can calibrate the differential code bias(DCB) accurately. In the meantime, the abnormities and failures of navigation signal can also be monitored. Finally, the accuracy of DCB calibration and the performance of fault monitoring have been verified by practical test data and numerical simulation data, respectively. The results show that the accuracy of DCB calibration is less than 0.1 ns and the novel satellite-equipped receiver can monitor the signal quality effectively.展开更多
文摘Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.
文摘Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.
基金The Ministry of Science and Technology of the People's Republic of China,Within the Framework of the Project the CNC Products innovation demonstration(No.2012BAF13B06)
文摘Based on mobile devices as a solution for measurement faces interesting challenges, which involve poor human- computer interaction and limited computer capability. In this paper, we present the mobile sensing system (MSS) with func- tions of constructing, configuring and implementing measurement applications. MSS consists of a mobile device and a sensor probe, In the mobile device we install a pocket virtual instrument platform (PVIP), which has object-oriented software ar- chitecture and can be configured through extensible markup language (XML) files. And these configuration files can be written to the probe. Therefore, the probe can produce the measurement of APP in the mobile device. This infrastructure has been illustrated by a sound signal acquisition task and a flexible force measurement task which are finished with an android smartphone and a probe. These examples suggest that MSS is reconfigurable, highly automatical and flexible.
基金supported by the National Science Foundation of China (grant Nos. 41271024, 41444430204, and J1210065)the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2016-266 and lzujbky2016-270)
文摘Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.
文摘Drought research requires data on precipitation and actual soil moisture of fields because precipitation is variable among years and the soil textures differ with crop fields. Measurement of soil water content in the field is simple but labor-intensive. A prototype of an automatic field data monitoring system has been recently developed to collect data more efficiently. Using this system, data of soil water contents was successfully transmitted onto the personal computer approximately 700 m away from wheat field plots, for the period from March to May which was critical for soil drying and wheat growth. In addition, sample data of soil water content and grain yield was obtained from field plots of three bread wheat genotypes.
文摘The chattering noise problem of reed switch sensor signal for Automatic Meter Reading system was analyzed experimentally under various types of external vibrations and shocks. The external vibration level amplitude was measured with an accelerometer. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. But the measured digital meter data are occurred difference or errors by chattering noise. The reed switch contains chattering error by itself at the force equivalent position. The vibrations such as passing vehicle near to the reed switch installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using digital filter algorithm and also statistical calibration methods. However software approaches were implemented for reducing chattering error, there has still generated chattering error due to external mechanical vibrations and magnetic field. The chattering errors can be reduced by changing leaf spring structure using mechanical hysteresis characteristics.
文摘This paper describes target detection improvement in a distance measurement system using two rotatable cameras for floating production, storage and offloading (FPSO) facilities. The authors have developed a distance measurement system that consists of two rotatable cameras on a ship and a target on a wharf for the automatic berthing of ships. This system measures a distance by detecting and tracking the target on the wharf using the two rotatable cameras on the ship. Our goal is to apply this distance measurement system to an automatic relative positioning system for a ship at an FPSO facility. In this application, the shape of the target in the images captured by the cameras is deformed by their relative positions and attitudes, which increases the measurement errors. To solve this problem, we propose a target detection method that improves the target deformations. The proposed target detection method is able to detect the deformed targets using a target database that is created by image conversion with the perspective projection of a reference target. By using the proposed target detection method, the distance measurement error is decreased. Experimental results on a miniature scale and in an indoor environment confirmed that the measurement error of the relative distance is decreased by using the proposed target detection method.
文摘Biometric techniques require critical operations of digital processing for identification of individuals. In this context, this paper aims to develop a system for automatic processing of fingerprint identification by their minutiae using Artificial Neural Networks (ANN), which reveals to be highly effective. The ANN method implemented is a based on Multi-Layer Perceptron (MLP) model, which utilizes the algorithm of retro-propagation of gradient during the learning process. In such a process, the mean square error generated represents the specific parameter for the identification phase by comparing a fingerprint taken from a crime scene with those of a reference database.
基金supported by the National Basic Research Program of China(Grant No.2015CB352100)
文摘In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible traps and defects induced by ions implantation in the gate-oxide and their further impacting on the sensitivity and dose range of RADFETs were analyzed qualitatively. Our devices had the dry/wet/dry sandwich gate-oxide of 420 nm thick. Different ion-implanting doses and post-annealing temperatures were carried out during the RADFETs fabrication. We built a real time auto-measurement system to realize the auto-state-switch between irradiation and read-out modes, and in-situ measurement of output voltage for ten devices in turn at once of radiation experiment. The threshold voltage, dose range and sensitivity of RADFETs were extracted and analyzed in detail. The results showed that the highest sensitivity of 229 mV/Gy achieved when the implant dose was2.2×1011 cm.2 and the post-annealing temperature was 1000°C, and the dose range of 34 Gy as well.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.6132XX)the National Hi-Tech Research and Development Program of China(“863”Project)(Grant No.2015AA7054032)the National Natural Science Foundation of China(Grant No.60901017)
文摘Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. In order to solve the problems associated with these risks, receiver autonomous integrity monitoring(RAIM) and ground-based signal quality monitoring stations are widely used. Although these technologies can protect the user from the risks, they are expensive and have limited region coverage. Autonomous monitoring of satellite signal quality is an effective method to eliminate these shortcomings of the RAIM and ground-based signal quality monitoring stations; thus, a new navigation signal quality monitoring receiver which can be equipped on the satellite platform of GNSS is proposed in this paper. Because this satellite-equipped receiver is tightly coupled with navigation payload, the system architecture and its preliminary design procedure are first introduced. In theory, code-tracking loop is able to provide accurate time delay estimation of received signals. However, because of the nonlinear characteristics of the navigation payload, the traditional code-tracking loop introduces errors. To eliminate these errors, the dummy massive parallel correlators(DMPC) technique is proposed. This technique can reconstruct the cross correlation function of a navigation signal with a high code phase resolution. Combining the DMPC and direct radio frequency(RF) sampling technology, the satellite-equipped receiver can calibrate the differential code bias(DCB) accurately. In the meantime, the abnormities and failures of navigation signal can also be monitored. Finally, the accuracy of DCB calibration and the performance of fault monitoring have been verified by practical test data and numerical simulation data, respectively. The results show that the accuracy of DCB calibration is less than 0.1 ns and the novel satellite-equipped receiver can monitor the signal quality effectively.