In this paper a fast output sampling (FOS) estimator is designed for estimation of state-space variables of DC-DC boost converter. Estimated state-space variables are output voltage of the converter and its first de...In this paper a fast output sampling (FOS) estimator is designed for estimation of state-space variables of DC-DC boost converter. Estimated state-space variables are output voltage of the converter and its first derivative, which are suitable for model reference adaptive controllers and sliding mode controllers design. Estimator is designed for operation in continuous and discontinuous conduction modes. The simulation results show that proposed FOS estimator provides good estimation of state-space variables despite the voltage ripple caused by high frequency switching in converter and disturbances (change of load and input voltage).展开更多
The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded o...The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded out in order to analyze the boundary layer transition and separation processes at a low Reynolds nttmber, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distri- butions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle. Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale cohe- rent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.展开更多
文摘In this paper a fast output sampling (FOS) estimator is designed for estimation of state-space variables of DC-DC boost converter. Estimated state-space variables are output voltage of the converter and its first derivative, which are suitable for model reference adaptive controllers and sliding mode controllers design. Estimator is designed for operation in continuous and discontinuous conduction modes. The simulation results show that proposed FOS estimator provides good estimation of state-space variables despite the voltage ripple caused by high frequency switching in converter and disturbances (change of load and input voltage).
文摘The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded out in order to analyze the boundary layer transition and separation processes at a low Reynolds nttmber, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distri- butions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle. Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale cohe- rent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.