In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is giv...In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is given by the first term of quantum Wilson loop (w) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (w) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4, we have obtained a complete expression of the excitation contributed from the leading term (w^(2))of (w).展开更多
We reexamine the charged AdS domain wall solution to the Einstein-Abelian-Higgs model proposed by Gubser et al. as holographic superconductors at quantum critical points and comment on their statement about the unique...We reexamine the charged AdS domain wall solution to the Einstein-Abelian-Higgs model proposed by Gubser et al. as holographic superconductors at quantum critical points and comment on their statement about the uniqueness of gravity solutions. We generalize their explorations from (3 + 1)-dimensions to arbitrary n -b 1Ds and find that the n +1≥5D charged AdS domain walls are unstable against electric perturbations.展开更多
We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired BornInfeld(EiBI)theory.In order to localize fermion on the brane,it needs to be considered the Yukawa coupling betwee...We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired BornInfeld(EiBI)theory.In order to localize fermion on the brane,it needs to be considered the Yukawa coupling between the fermion and the background scalar field.In our models,since the background scalar field has kink,double kink,or anti-kink solution,the system has rich resonant Kaluza-Klein(KK)modes structure.The massive KK fermionic modes feel a volcano potential,which result in a fermionic zero mode and a set of continuous massive KK modes.The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions.展开更多
基金The project partially supported by Fund of the Education Department of Hubei Province of China under Grant No. D200534001
文摘In 4-dimensional R-gravity, using the linear and square terms of the expanding expression of the space-time connection, we calculate the possible curvature excitation (order k^4) of gravitational field, which is given by the first term of quantum Wilson loop (w) through two-point Green's function of the connection. At the same time using the tree diagram propagators of gravitons, the lowest order (k^4) correction to (w) is also calculated through the graviton self-energy in the term. Under the accuracy condition up to order k^4, we have obtained a complete expression of the excitation contributed from the leading term (w^(2))of (w).
基金Supported by Beijing Municipal Natural Science Foundation under Grant No.Z2006015201001
文摘We reexamine the charged AdS domain wall solution to the Einstein-Abelian-Higgs model proposed by Gubser et al. as holographic superconductors at quantum critical points and comment on their statement about the uniqueness of gravity solutions. We generalize their explorations from (3 + 1)-dimensions to arbitrary n -b 1Ds and find that the n +1≥5D charged AdS domain walls are unstable against electric perturbations.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11075065the Huo Ying-Dong Education Foundation of Chinese Ministry of Education under Grant No.121106the Fundamental Research Funds for the Central Universities under Grant No.lzujbky-2014-31
文摘We investigate the fermionic resonances for both chiralities in five-dimensional Eddington-inspired BornInfeld(EiBI)theory.In order to localize fermion on the brane,it needs to be considered the Yukawa coupling between the fermion and the background scalar field.In our models,since the background scalar field has kink,double kink,or anti-kink solution,the system has rich resonant Kaluza-Klein(KK)modes structure.The massive KK fermionic modes feel a volcano potential,which result in a fermionic zero mode and a set of continuous massive KK modes.The inner structure of the branes and a free parameter in background scalar field influence the resonant behaviors of the massive KK fermions.