We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic osci...We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.展开更多
基金The project supported by the Chinese National Key Basic Research Special Fund, the Natural Science Foundation of Beijing, and National Natural Science Foundation of China under Grant No. 90403028
文摘We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.