期刊文献+
共找到218篇文章
< 1 2 11 >
每页显示 20 50 100
基于改进自回归差分移动平均模型的网络流量预测 被引量:5
1
作者 汪尧 黄宁 +1 位作者 武润升 王军良 《通信技术》 2021年第12期2626-2631,共6页
为了缓解通信网络的拥塞问题,减少用户请求服务的等待时间,提高网络的利用率,网络运营服务商需要对网络实时流量进行分析,而建立准确高效的流量分析模型能提供更加准确的数据支持。基于此,提出了改进的自回归差分移动平均模型,该方法与... 为了缓解通信网络的拥塞问题,减少用户请求服务的等待时间,提高网络的利用率,网络运营服务商需要对网络实时流量进行分析,而建立准确高效的流量分析模型能提供更加准确的数据支持。基于此,提出了改进的自回归差分移动平均模型,该方法与传统模型方法相比,引入了误差扩散因子这一新的参数,并使用改良的粒子群算法得到欲求解的参数值。通过对测试集中的流量数据进行验证分析,可以得到,改进后的模型相比改进前,预测精度和稳定性均得到了提升。 展开更多
关键词 网络流量 流量预测 自回归差分移动平均模型 改良粒子群算法
下载PDF
基于季节性(差分整合)自回归移动平均模型的广西乙类传染病发病情况预测 被引量:1
2
作者 韦雪梅 杨晓祥 +2 位作者 韦雪芹 李娟 袁宗祥 《内科》 2023年第3期209-214,共6页
目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月... 目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月报告发病数据作为测试集对模型进行测试。结果广西乙类传染病的发病情况呈季节性规律,最优预测模型为SARIMA(3,1,3)(2,0,0)_(12),其预测效果平均相对误差为7.99%,预测发病例数95%CI均包含了实际发病例数。结论SARIMA(3,1,3)(2,0,0)_(12)模型能较好地拟合广西乙类传染病的发病情况,可用于疫情的短期监测。 展开更多
关键词 广西壮族自治区 乙类传染病 季节性(差分整合)自回归移动平均模型 疾病预测
下载PDF
季节性自回归差分移动平均模型在牡蛎中诺如病毒检出率预测上的应用 被引量:3
3
作者 杨明树 董蕾 +1 位作者 贾添慧 喻勇新 《中国食品卫生杂志》 CSCD 北大核心 2021年第4期430-434,共5页
目的基于季节性自回归差分移动平均(ARIMA)模型分析并预测上海市售牡蛎中诺如病毒(NoV)的检出率,为水产品中NoV的污染规律提供参考。方法2016年6月—2019年11月,从上海芦潮港海鲜市场定期采购牡蛎样品共531只,通过巢式聚合酶链式反应(Ne... 目的基于季节性自回归差分移动平均(ARIMA)模型分析并预测上海市售牡蛎中诺如病毒(NoV)的检出率,为水产品中NoV的污染规律提供参考。方法2016年6月—2019年11月,从上海芦潮港海鲜市场定期采购牡蛎样品共531只,通过巢式聚合酶链式反应(Nest-PCR),对其进行了NoV检测,按季度分析检出率。采用季节性ARIMA模型对牡蛎中NoV的检出率数据拟合建立模型,经过数据平稳化、模型选择和拟合、模型诊断得到最优模型,并运用最优模型对未来四个季度牡蛎中NoV的检出率进行预测。结果拟合出的季节性ARIMA(0,1,1)(0,1,0)4为最优模型,赤池信息量准则的修正值(AICc)最小(58.70),残差经Ljung-Box检验为白噪声序列。模型拟合牡蛎中NoV的阳性率趋势与实际检出率趋势基本吻合,平均绝对误差(MAE)为4.85,平均绝对百分比误差(MAPE)为30.25。用最优模型预测的未来四个季度牡蛎中NoV阳性检出率分别为31.89%、12.80%、9.47%、6.14%。结论季节性ARIMA模型(0,1,1)(0,1,0)4能较好地拟合牡蛎中NoV的阳性检出率趋势,对NoV污染的牡蛎等水产品的风险评估及NoV流行的防控具有一定的意义。 展开更多
关键词 季节性自回归差分移动平均模型 诺如病毒 检出率 时间序列分析 预测
原文传递
基于小波变换与差分自回归移动平均模型的微博话题热度预测 被引量:13
4
作者 陈羽中 方明月 +1 位作者 郭文忠 郭昆 《模式识别与人工智能》 EI CSCD 北大核心 2015年第7期586-594,共9页
研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热... 研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热度.最后,提出基于小波变换与差分自回归移动平均模型的微博话题热度预测方法,以此预测话题热度(能量值)及话题能量峰值.实验表明,文中方法可有效预测话题热度及峰值,具有较低的残差和遗漏率. 展开更多
关键词 话题热度预测 用户影响力 老化理论 小波变换 差分自回归移动平均模型(ARIMA)
下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
5
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(ARIMA模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
下载PDF
差分自回归移动平均模型在南通市手足口病疫情预测中的应用 被引量:3
6
作者 练维 魏叶 +1 位作者 韩颖颖 帅小博 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期59-64,共6页
目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发... 目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发病率为验证数据进行验证,检验模型的预测效果。结果:2010—2019年南通市共报告手足口病90 766例,年平均发病率为124.36/10万,疫情有明显季节性,呈双峰特征,为夏季(5、6、7月)高峰和冬季(11、12月)次高峰;近年来南通市手足口病的病原谱以其他肠道病毒为主;利用ARIMA(1,0,1)(1,1,1)12模型,预测2019年7—12月手足口病发病率分别为7.08/10万、1.81/10万、3.74/10万、7.21/10万、10.71/10万和11.29/10万,与实际发病率相比,两者差异无统计学意义(Z=0.48,P=0.63)。结论:差分自回归移动平均模型能较好地预测手足口病的发病趋势,可用于短期的预警监测。 展开更多
关键词 差分自回归移动平均模型 手足口病 预测
下载PDF
基于差分自回归—随机森林的动车组轮对旋修策略优化研究
7
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
下载PDF
自回归差分移动平均模型季节乘积模型在儿童EB/CMV/Cox病毒感染门急诊人次预测中的应用
8
作者 王晔恺 于倩 +3 位作者 姚燕珍 洪开听 罗雯斌 鲍舟君 《中国卫生检验杂志》 CAS 2020年第15期1815-1817,1821,共4页
目的探讨自回归差分移动平均(autoregressive integrated moving average model,ARIMA)季节乘积模型在预测儿童EB、柯萨奇、巨细胞病毒三项(以下简称病毒三项)感染门急诊人次的应用。方法选择并收录本院2016年1月-2018年12月的儿科门急... 目的探讨自回归差分移动平均(autoregressive integrated moving average model,ARIMA)季节乘积模型在预测儿童EB、柯萨奇、巨细胞病毒三项(以下简称病毒三项)感染门急诊人次的应用。方法选择并收录本院2016年1月-2018年12月的儿科门急诊就诊并进行病毒三项检测的患儿人次。使用SPSS 17.0软件进行ARIMA季节乘积模型进行拟合,并计算2019年1月-4月的预测值与实际人次进行比较,评价模型预测效果。结果ARIMA(0,1,1)(0,1,0)12模型是拟合儿童病毒三项就诊人次的最佳预测模型,评价误差为20.46%。结论ARIMA季节乘积模型能为医院合理调配病毒三项患儿就诊资源提供有效依据。 展开更多
关键词 自回归差分移动平均模型 病毒三项 预测
原文传递
差分自回归移动平均与广义回归神经网络组合模型在丙型肝炎月发病率中的预测应用 被引量:6
9
作者 刘红杨 刘洪庆 +1 位作者 李望晨 赵晶 《中国全科医学》 CAS 北大核心 2017年第2期182-186,共5页
目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝... 目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝炎月度发病率数据及山东省统计局发布的同期人口资料。对2004—2014年山东省丙型肝炎月发病率数据构建ARIMA模型,验证拟合精度并外推预测;将ARIMA模型拟合值作为GRNN模型的输入,实际值作为GRNN模型的输出,对样本进行训练和预测。比较单纯ARIMA模型和ARIMA-GRNN组合模型在丙型肝炎月发病率中的预测效果。结果 2004—2014年山东省丙型肝炎年均发病率为17.28/10万,并随着时间的推移呈上升趋势(Z=29.05,P<0.01)。ARIMA(1,2,1)模型预测2014年山东省丙型肝炎发病率与实际发病率基本一致,落在95%置信区间内,拟合效果较好。以ARIMA(1,2,1)模型拟合值作为GRNN模型的输入,丙型肝炎月发病率实际值作为GRNN模型的输出,取最优光滑因子0.12训练模型,ARIMA-GRNN组合模型预测的拟合值与实际值基本吻合。ARIMA模型和ARIMA-GRNN组合模型的平均误差率(MER)分别为16.87%、15.30%;决定系数(R^2)分别为0.53、0.60;平均绝对误差(MAE)分别为0.17、0.09;平均绝对百分误差(MAPE)分别为1.18、0.35。结论 ARIMA-GRNN组合模型对山东省丙型肝炎月发病率拟合及预测效果优于单纯ARIMA模型,具有较高的拟合精度,有较为广阔的应用前景,对于疫情预测工作有一定的实用性意义。 展开更多
关键词 丙型肝炎 发病率 预测 差分自回归移动平均模型 广义回归神经网络
下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:5
10
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均自回归模型(ARIMA) 变分模态分解 自适应模糊神经网络
下载PDF
基于季节性差分整合移动平均自回归模型的城市公交短期客流预测 被引量:3
11
作者 李炜聪 潘福全 +3 位作者 胡盼 张丽霞 杨晓霞 杨金顺 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期308-314,共7页
为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本... 为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本,对非平稳的客流时间序列进行1阶7步差分处理,对差分后的数据进行平稳性检验;通过相对信息量计算,确定预测模型中未知参数,对差分处理后的时间序列进行标准化残差检验,检验结果为白噪声序列,得到周期为7的季节性差分整合移动平均自回归预测模型;利用预测模型对2019年7—12月公交客流量进行预测与误差分析。结果表明,模型预测的平均相对误差为4.02%,最大相对误差为8.36%,模型预测精度较高,适用于青岛市公交短期客流量预测。 展开更多
关键词 交通预测 短期客流预测 季节性差分整合移动平均自回归模型 城市公交 平稳性检验
下载PDF
基于差分自回归移动平均法预测苏格兰鲱鱼的迁移
12
作者 王睿 梁一迪 +1 位作者 张广运 白羽 《建模与仿真》 2021年第2期471-480,共10页
作为苏格兰渔业经济支柱的鲱鱼,正在随着全球变暖而向北迁移。为研究鲱鱼种群分布位置的变化,把北大西洋苏格兰海域划分成28个区域,将过去167年间捕鱼季的海洋表面温度视为时间序列,建立了基于差分自回归移动平均法的海洋表面温度预测模... 作为苏格兰渔业经济支柱的鲱鱼,正在随着全球变暖而向北迁移。为研究鲱鱼种群分布位置的变化,把北大西洋苏格兰海域划分成28个区域,将过去167年间捕鱼季的海洋表面温度视为时间序列,建立了基于差分自回归移动平均法的海洋表面温度预测模型,得到了未来50年海表温度变化情况。结合鲱鱼的适宜生存条件,分析了鲱鱼的迁移路径及未来最有可能聚集的地点。研究结果为苏格兰地区的渔业经济管理与规划提供了参考和指导。 展开更多
关键词 鲱鱼 时间序列 差分自回归移动平均 海洋表面温度
下载PDF
差分整合移动平均自回归模型乘积季节模型在病毒性肝炎门诊量预测中的应用 被引量:1
13
作者 郭奇 边香 +4 位作者 杨菁 侯晓芳 郭柯宇 高永桂 饶华祥 《山西医药杂志》 CAS 2021年第3期347-349,共3页
目的分析某三级综合医院病毒性肝炎门诊量的变化并建立合适的模型,预测其就诊量变化趋势,为医院决策提供依据。方法运用Excel 2019软件建立数据库,SPSS 22.0软件对2005—2018年病毒性肝炎门诊量数据进行建模,2019年数据进行模型验证。... 目的分析某三级综合医院病毒性肝炎门诊量的变化并建立合适的模型,预测其就诊量变化趋势,为医院决策提供依据。方法运用Excel 2019软件建立数据库,SPSS 22.0软件对2005—2018年病毒性肝炎门诊量数据进行建模,2019年数据进行模型验证。结果病毒性肝炎门诊量整体呈下降趋势,但2017年后有回升趋势。采用传统建模方法和专家建模器拟合最优模型均为差分整合移动平均自回归模型(ARIMA)(0,1,1)(1,0,1)12。模型残差检验显示,残差均为白噪声序列,经典建模和专家建模器所建模型各项指标相似,平稳的R~2均为0.336,标准化的BIC值分别为6.126、6.089。2019年预测数据显示短期预测效果较好,而长期预测效果不理想。结论采用专家建模器构建的乘积季节模型在病毒性肝炎门诊量短期预测中预测效果较好,该方法客观、高效、简单,可用于门诊量短期预测。 展开更多
关键词 差分整合移动平均自回归模型 门诊医疗 预测 肝炎 病毒性
下载PDF
差分自回归移动平均模型在企业物资采购中的应用
14
作者 张云 《设备管理与维修》 2020年第10期32-34,共3页
在分析企业采购数据特点的基础上,提出一种基于差分自回归移动平均模型的多模型预测方法。利用了数据的季节特性而不是剔除季节性数据的影响,使得物资的季节性需求得到更好的预测。该方法首先以历史的同比数据作为序列,建立纵向预测模型... 在分析企业采购数据特点的基础上,提出一种基于差分自回归移动平均模型的多模型预测方法。利用了数据的季节特性而不是剔除季节性数据的影响,使得物资的季节性需求得到更好的预测。该方法首先以历史的同比数据作为序列,建立纵向预测模型,再以环比数据作为序列建立横向预测模型,最后通过横纵向预测结果的加权平均实现数据的最终预测。通过近年来采购数据的预测和真值对比分析,验证了该方法的有效性,也为具有此类特征的数据预测提供了新的分析计算方法,可以用于各行业的预测分析。 展开更多
关键词 采购预测 差分自回归移动平均模型 多模型
下载PDF
基于差分自回归移动平均模型的医用直线加速器剂量偏移预测研究
15
作者 方园 《医疗装备》 2022年第11期28-31,共4页
目的结合时间序列挖掘中对未来值的预测方法,实现医用直线加速器质控数据偏移的预测。方法选取1个调整周期内前19条医用直线加速器剂量监测数据作为时间序列的观测组,随后的5条医用直线加速器剂量监测数据作为参照组,建立前19条监测数... 目的结合时间序列挖掘中对未来值的预测方法,实现医用直线加速器质控数据偏移的预测。方法选取1个调整周期内前19条医用直线加速器剂量监测数据作为时间序列的观测组,随后的5条医用直线加速器剂量监测数据作为参照组,建立前19条监测数据的时间序列,对时间序列进行稳定性分析,确定构建时间序列模型——差分自回归移动平均(ARIMA)模型,并利用模型对其他调整周期内的监测数据进行预测。结果利用时间序列进行医用直线加速器剂量偏移预测的表现良好,预测值与实测值的对比误差为-1.28%~0.80%,偏移量总体趋势相同。结论该研究提出的医用直线加速器剂量偏移预测方法对加速器剂量参数的及时调整起到了参考和提示作用。 展开更多
关键词 差分自回归移动平均模型 医用直线加速器 放射治疗剂量
下载PDF
差分自回归移动平均模型在区县级公立医院门急诊量预测中的应用实践
16
作者 邱雪菡 彭迪 杨翠 《华西医学》 CAS 2023年第12期1807-1811,共5页
目的利用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型精准预测区县级公立医院的门急诊量,为医院预算及运营决策提供重要依据。方法采集成都市双流区某公立医院2012年1月—2023年11月逐月的门急诊量,使用R ... 目的利用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型精准预测区县级公立医院的门急诊量,为医院预算及运营决策提供重要依据。方法采集成都市双流区某公立医院2012年1月—2023年11月逐月的门急诊量,使用R 4.3.1软件,将2012年1月—2022年12月的逐月数据用于构建ARIMA模型,预测及验证2023年1月—11月的门急诊量。结果除2023年1、3月外,其他月份的预测门急诊量与实际门急诊量吻合较好,2023年1月—11月的平均绝对百分比误差为8.504%。2023年1月—11月的实际和预测门急诊总量分别为144.196万、141.713万人次,相对误差为–1.722%。结论ARIMA模型能较好地预测区县级医院门急诊量,但新型冠状病毒感染疫情高发等因素会影响短期预测的精准性。 展开更多
关键词 门急诊量 差分自回归移动平均模型 预测
原文传递
基于ARIMA-PSO-LSTM的太阳能预测
17
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
下载PDF
基于时间序列的新能源汽车销售量预测——以比亚迪为例
18
作者 邹瑞 刘吉华 许思为 《科技和产业》 2024年第15期87-93,共7页
新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测... 新能源汽车的发展对于推进“双碳”目标实现起着关键作用,准确预测销量对于政策制定和企业发展有着重要意义。以比亚迪新能源汽车作为研究对象,运用其历史销量数据分别构建季节性自回归差分移动平均(SARIMA)和长短期记忆(LSTM)网络预测销量。为提升模型预测效果,集成单一模型得到ARIMA-LSTM(自回归差分移动平均-长短期记忆)组合模型,将销量数据分解为线性和非线性两部分,使用ARIMA模型预测销量数据中的趋势,模型的残差及其余非线性部分的数据使用LSTM模型预测,最终将模型的预测结果合并。将组合模型应用于国内新能源汽车销量预测,预测精度为90.96%,效果较单一模型有显著提升。 展开更多
关键词 汽车销量预测 季节性自回归差分移动平均(SARIMA) 神经网络 新能源汽车
下载PDF
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
19
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
20
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部