目的:建立宁波市流感样病例(ILI)的预测模型,并对所建模型预测效果进行验证和评价。方法收集2008年1月至2015年6月宁波市流感监测哨点医院 ILI 监测资料,对数据进行统计分析,建立ARIMA模型及ARIMA-GARCH模型对流感发病情况进行预...目的:建立宁波市流感样病例(ILI)的预测模型,并对所建模型预测效果进行验证和评价。方法收集2008年1月至2015年6月宁波市流感监测哨点医院 ILI 监测资料,对数据进行统计分析,建立ARIMA模型及ARIMA-GARCH模型对流感发病情况进行预测和评价。结果2008—2014年宁波市ILI累计报告101056例,发病率大致呈逐年下降趋势。针对ILI发病率的ARIMA模型构建中ARIMA(2,1,1)(1,1,1)12为最佳模型(BIC=6.250),白噪声残差分析得到Ljung-Box统计量Q值为6.027(P〉0.05)。ARIMA-GARCH组合模型的预测效果较单一ARIMA模型理想,平均绝对误差分别为11.049和12.757。结论 ARIMA-GARCH模型可以模拟宁波地区流感的流行趋势,为流感防控策略的制定提供理论依据。展开更多
文摘目的:建立宁波市流感样病例(ILI)的预测模型,并对所建模型预测效果进行验证和评价。方法收集2008年1月至2015年6月宁波市流感监测哨点医院 ILI 监测资料,对数据进行统计分析,建立ARIMA模型及ARIMA-GARCH模型对流感发病情况进行预测和评价。结果2008—2014年宁波市ILI累计报告101056例,发病率大致呈逐年下降趋势。针对ILI发病率的ARIMA模型构建中ARIMA(2,1,1)(1,1,1)12为最佳模型(BIC=6.250),白噪声残差分析得到Ljung-Box统计量Q值为6.027(P〉0.05)。ARIMA-GARCH组合模型的预测效果较单一ARIMA模型理想,平均绝对误差分别为11.049和12.757。结论 ARIMA-GARCH模型可以模拟宁波地区流感的流行趋势,为流感防控策略的制定提供理论依据。