期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于因果自回归流模型的因果结构学习算法
1
作者 卢小金 陈薇 +1 位作者 郝志峰 蔡瑞初 《计算机工程》 CAS CSCD 北大核心 2024年第3期131-136,共6页
因果自回归流模型已经在非独立噪声等场景的因果方向推断问题上取得了一定的进展,但在多个结点的场景下仍存在全局结构搜索带来的准确度低和计算时间复杂度高的问题。面向非时序观察数据设计一种两阶段因果结构学习算法。在第一阶段,基... 因果自回归流模型已经在非独立噪声等场景的因果方向推断问题上取得了一定的进展,但在多个结点的场景下仍存在全局结构搜索带来的准确度低和计算时间复杂度高的问题。面向非时序观察数据设计一种两阶段因果结构学习算法。在第一阶段,基于观测数据的条件独立性,对完全无向图通过条件独立性检验得到基本的因果骨架;在第二阶段,基于因果自回归流模型,通过标准化流的方法计算骨架中每条无向边在不同方向上的边缘似然概率,进而通过比较边缘似然概率进行因果方向推断。实验结果表明:该算法在多组不同参数生成的仿真因果结构数据集上均有较好的表现,与现有的主流因果结构学习算法相比,F1值平均提升15%~28%;在真实因果结构数据集实验中,该算法能够较为完整准确地学习到变量间的因果关系,与主流的因果结构学习算法相比,F1值平均提升28%~48%,具有更强的鲁棒性。 展开更多
关键词 因果结构学习 因果发现 加性噪声模型 因果自回归流模型 标准化
下载PDF
基于改进自回归流模型的坝基三维裂隙网络多参数模拟 被引量:2
2
作者 张亦弛 吕明明 +3 位作者 关涛 王佳俊 余佳 任炳昱 《水利学报》 EI CSCD 北大核心 2021年第5期565-577,共13页
在水电工程坝基三维离散裂隙网络(Discrete Fracture Network,DFN)随机建模中,关键在于对裂隙的倾向、倾角、开度等几何多参数的多维联合分布估计。然而,现有基于典型分布的DFN模拟方法存在缺乏考虑裂隙参数之间的相关性,且难以实现对... 在水电工程坝基三维离散裂隙网络(Discrete Fracture Network,DFN)随机建模中,关键在于对裂隙的倾向、倾角、开度等几何多参数的多维联合分布估计。然而,现有基于典型分布的DFN模拟方法存在缺乏考虑裂隙参数之间的相关性,且难以实现对裂隙参数多维联合分布的高精度概率密度估计的问题。针对上述问题,本文提出一种改进的自回归流模型——密度峰值聚类自回归流(Density Peak Clustering Autoregressive Flow,DPCAF),通过采用高斯混合分布与DensityPeak聚类算法改进标准化特征空间的基础分布,弥补自回归流在分布估计的过程中难以考虑裂隙优势分组的不足,提高对于多峰的联合分布的拟合能力;进一步提出基于DPCAF模型的裂隙网络多参数模拟方法,考虑裂隙几何参数之间的相关性,实现其多维联合分布的精确极大似然估计与采样。工程应用结果表明,DPCAF模型相比于现有基于典型分布的方法能够更好地拟合复杂的多参数联合分布,且具备能够建立裂隙几何参数关联关系的优势,从而保证了DFN模型的可靠性。 展开更多
关键词 水电工程 坝基岩体 离散裂隙网络 多参数模拟 自回归流模型
下载PDF
The Study on Trade Policy and Openness of Mongolia: Influences on Trade Flows Between China-Mongolia-Russia (Past and Future) 被引量:1
3
作者 Fu Qiang Sodnomdargia Bayanjargal 《Chinese Business Review》 2016年第5期249-264,共16页
This paper aimed to highlight the effects of conflict in Mongolia on trade policy and openness, by estimating the trade flows with neighbor countries (China and Russia). Fourteen years' (2000-2013) data of Mongol... This paper aimed to highlight the effects of conflict in Mongolia on trade policy and openness, by estimating the trade flows with neighbor countries (China and Russia). Fourteen years' (2000-2013) data of Mongolian imports and exports were collected and gone through principal component analysis (PCA) and empirical analysis for grouping various trades with China and Russia. The empirical analysis identified the determining factors of Mongolian trade flow and openness with China and Russia. Empirical analysis evidenced that Mongolian trade and openness policy raised bilateral trade between China and Russia, leaving a great influence on economic size. Two main questions represented as empirically tested by each sample country. How did Mongolian trade policy and openness influence trade flows between China and Russia and economic growth of Mongolia? Did Mongolian trade policy and the bilateral trade with China and Russia increase on trade openness? Finally, the study focused on the forecasts from 2016 to 2018 to examine Mongolian trade flows with China and Russia using ordinary least squares method and autoregressive-moving-average (ARMA) model. China-Mongolia-Russia trade flows will continue to dominate during the forecasted period. As shown by the structure of export and import, goods with China and Russia influenced the mutual trade amount. Moreover, China and Russia traded to continue with Mongolia for goods in long run. Trade policy and openness, the major contributor in Mongolian economy, are significantly playing roles in trade and economy. 展开更多
关键词 trade policy OPENNESS neighbour countries influence
下载PDF
An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas 被引量:1
4
作者 Bhogendra MISHRA Nitin K.TRIPATHI Muk S.BABEL 《Journal of Mountain Science》 SCIE CSCD 2014年第4期825-837,共13页
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantita... With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. 展开更多
关键词 Snow cover Kaligandai river HIMALAYAS Artificial neural network Global warming CLIMATECHANGE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部