Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between p...Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps:(1) mapping parameters from existing product families to functional modules,(2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and(3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method.展开更多
基金Project(9140A18010210KG01)supported by the Departmental Pre-research Fund of China
文摘Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps:(1) mapping parameters from existing product families to functional modules,(2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and(3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method.