A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat...A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat-form suitable for the Jining No.3 coal mine is presented. This network is an information superhighway intended to inte-grate all existing and new automation subsystems. Its standard interface can be used with future subsystems. The net-work,data structure and management decision-making all employ this uniform hardware and software. This effectively avoids the problems of system and information islands seen in traditional mine-automation systems. The construction of the network provides a stable foundation for digital communication in the Jining No.3 coal mine.展开更多
Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing s...Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing sector has benefited from automation, several challenges exist within the Australian underground coal industry which makes it difficult to fully exploit these technologies. At the University of Wollongong a series of reprogrammable electromechanical manipulators have been designed to overcome these challenges and automatically handle the installation of roof and rib containment consumables on a continuous miner. The automated manipulation removes personnel from hazards in the immediate face area, particularly those associated with working in a confined and unstable working environment in close proximity to rotating and moving equipment. In a series of above ground trials the automated system was successfully demonstrated without human intervention and proven to be capable of achieving cycle times at a rate of 10 m per operating hour, consistent with that required to support high capacity longwall mines. The trials also identified a number of refinements which could further improve both cycle times and system reliability when considering the technology for underground use. The results have concluded that conventional manual handling practices on a continuous miner can be eliminated, and that the prototypes have significantly reduced the technical risk in proceeding to a full underground trial.展开更多
基金Project 50574094 supported by the National Natural Science Foundation of China
文摘A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat-form suitable for the Jining No.3 coal mine is presented. This network is an information superhighway intended to inte-grate all existing and new automation subsystems. Its standard interface can be used with future subsystems. The net-work,data structure and management decision-making all employ this uniform hardware and software. This effectively avoids the problems of system and information islands seen in traditional mine-automation systems. The construction of the network provides a stable foundation for digital communication in the Jining No.3 coal mine.
基金the Australian Coal Association Research Programthe Roadway Development Task Group for their ongoing support with funding and review
文摘Automated installation of primary roof support material can potentially increase productivity and operator safety in the roadway development process within underground coal mining. Although the broader manufacturing sector has benefited from automation, several challenges exist within the Australian underground coal industry which makes it difficult to fully exploit these technologies. At the University of Wollongong a series of reprogrammable electromechanical manipulators have been designed to overcome these challenges and automatically handle the installation of roof and rib containment consumables on a continuous miner. The automated manipulation removes personnel from hazards in the immediate face area, particularly those associated with working in a confined and unstable working environment in close proximity to rotating and moving equipment. In a series of above ground trials the automated system was successfully demonstrated without human intervention and proven to be capable of achieving cycle times at a rate of 10 m per operating hour, consistent with that required to support high capacity longwall mines. The trials also identified a number of refinements which could further improve both cycle times and system reliability when considering the technology for underground use. The results have concluded that conventional manual handling practices on a continuous miner can be eliminated, and that the prototypes have significantly reduced the technical risk in proceeding to a full underground trial.