We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AIR) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on...We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AIR) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a carldidate for quantum switch.展开更多
Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth re...Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth regions.This study presents an extension of our previous research which confirmed that adaptively adjusting parameter C can indeed overcome the inadequacy of the usage of a constant small value.Cmin is applied near a discontinuity while Cmax is used elsewhere and they are switched according to the variation of the local flow-field property.This study provides the reference values of the adaptive parameter C of WENOCU4 and systematically evaluates the comprehensive performance of three different switches(labeled as the binary,continuous,and hyperbolic tangent switches,respectively)based on an optimized efficient WENOCU4 scheme(labeled as EWENOCU4).Varieties of 1D scalar equations,empirical dispersion relation analysis,and multi-dimensional benchmark cases of Euler equations are analyzed.Generally,the dissipation and dispersion properties of these three switches are similar.Especially,employing the binary switch,EWENOCU4 achieves the best comprehensive properties.Specifically,the binary switch can efficiently filter more misidentifications in smooth regions than others do,particularly for the cases of 1 D scalar equations and Euler equations.Also,the computational efficiency of the binary switch is superior to that of the hyperbolic tangent switch.Moreover,the optimized scheme exhibits high-resolution spectral properties in the wavenumber space.Therefore,employing the binary switch is a more cost-effective improvement for schemes and is particularly suitable for the simulation of complex shock/turbulence interaction.This study provides useful guidance for the reference values of parameter C and the evaluation of adaptive switches.展开更多
Let A be a ring with indentity, G a finite group of automorphisms of A. The main result of this paper is that A/AG is Galois if and only if it is Frobenius and the module AGA (or AAG)is faithful. Moreover if |G| is in...Let A be a ring with indentity, G a finite group of automorphisms of A. The main result of this paper is that A/AG is Galois if and only if it is Frobenius and the module AGA (or AAG)is faithful. Moreover if |G| is invertible the author improves [2, Theorem 8] and [3, Theorem 8].展开更多
Rod-like molecules confined on a spherical surface can organize themselves into nematic liquid crystal phases. This can give rise to novel textures displayed on the surface, which has been observed in experiments. An ...Rod-like molecules confined on a spherical surface can organize themselves into nematic liquid crystal phases. This can give rise to novel textures displayed on the surface, which has been observed in experiments. An important theoretical question is how to find and predict these textures. Mathematically, a stable configuration of the nematic fluid corresponds to a local minimum in the free energy landscape. By applying Taylor expansion and Bingham approximation to a general molecular model, we obtain a closed-form tensor model, which gives a free energy form that is different from the classic Landau-de Gennes model. Based on the tensor model, we implement an efficient numerical algorithm to locate the local minimum of the free energy. Our model successfully predicts the splay, tennis-ball and rectangle textures. Among them, the tennis-ball configuration has the lowest free energy.展开更多
This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The pro...This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The proposed scheme can withstand adaptive attackers that can choose players for corruption at any time during the run of the protocol, and this kind of attack is powerful and realistic. In contrast, all previously presented threshold certificateless public key cryptosystems are proven secure against the more idealized static adversaries only. They choose and fix the subset of target players before running the protocol. We also prove security of this scheme in the random oracle model.展开更多
基金Supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No.09B079
文摘We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AIR) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a carldidate for quantum switch.
基金Project supported by the National Natural Science Foundation of China(Nos.11522222,11925207,and 11472305)the Scientific Research Plan of National University of Defense Technology in 2019(No.ZK19-02)the Postgraduate Scientific Research Innovation Project of Hunan Province(Nos.CX20200008 and CX20200084),China。
文摘Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights,they exhibit distinct numerical dissipation in smooth regions.This study presents an extension of our previous research which confirmed that adaptively adjusting parameter C can indeed overcome the inadequacy of the usage of a constant small value.Cmin is applied near a discontinuity while Cmax is used elsewhere and they are switched according to the variation of the local flow-field property.This study provides the reference values of the adaptive parameter C of WENOCU4 and systematically evaluates the comprehensive performance of three different switches(labeled as the binary,continuous,and hyperbolic tangent switches,respectively)based on an optimized efficient WENOCU4 scheme(labeled as EWENOCU4).Varieties of 1D scalar equations,empirical dispersion relation analysis,and multi-dimensional benchmark cases of Euler equations are analyzed.Generally,the dissipation and dispersion properties of these three switches are similar.Especially,employing the binary switch,EWENOCU4 achieves the best comprehensive properties.Specifically,the binary switch can efficiently filter more misidentifications in smooth regions than others do,particularly for the cases of 1 D scalar equations and Euler equations.Also,the computational efficiency of the binary switch is superior to that of the hyperbolic tangent switch.Moreover,the optimized scheme exhibits high-resolution spectral properties in the wavenumber space.Therefore,employing the binary switch is a more cost-effective improvement for schemes and is particularly suitable for the simulation of complex shock/turbulence interaction.This study provides useful guidance for the reference values of parameter C and the evaluation of adaptive switches.
文摘Let A be a ring with indentity, G a finite group of automorphisms of A. The main result of this paper is that A/AG is Galois if and only if it is Frobenius and the module AGA (or AAG)is faithful. Moreover if |G| is invertible the author improves [2, Theorem 8] and [3, Theorem 8].
基金supported by National Natural Science Foundation of China(Grant Nos.21274005 and 50930003)
文摘Rod-like molecules confined on a spherical surface can organize themselves into nematic liquid crystal phases. This can give rise to novel textures displayed on the surface, which has been observed in experiments. An important theoretical question is how to find and predict these textures. Mathematically, a stable configuration of the nematic fluid corresponds to a local minimum in the free energy landscape. By applying Taylor expansion and Bingham approximation to a general molecular model, we obtain a closed-form tensor model, which gives a free energy form that is different from the classic Landau-de Gennes model. Based on the tensor model, we implement an efficient numerical algorithm to locate the local minimum of the free energy. Our model successfully predicts the splay, tennis-ball and rectangle textures. Among them, the tennis-ball configuration has the lowest free energy.
基金the National Basic Research Program(973)of China(No.2007CB311201)the National High Technology Research and Development Program(863) of China(Nos.2006AA01Z422,2007AA01Z456)
文摘This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The proposed scheme can withstand adaptive attackers that can choose players for corruption at any time during the run of the protocol, and this kind of attack is powerful and realistic. In contrast, all previously presented threshold certificateless public key cryptosystems are proven secure against the more idealized static adversaries only. They choose and fix the subset of target players before running the protocol. We also prove security of this scheme in the random oracle model.